Ir al contenido

Documat


Contrastive and counterfactual explanations for test case prioritization: Ideas and challenges

  • Aurora Ramírez [1] Árbol académico ; Mario Berrios [1] ; Robert Feldt [2] Árbol académico ; José Raúl Romero [1] Árbol académico
    1. [1] Universidad de Córdoba

      Universidad de Córdoba

      Cordoba, España

    2. [2] Chalmers University of Technology

      Chalmers University of Technology

      Suecia

  • Localización: Actas de las XXVII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2023) / coord. por Amador Durán Toro Árbol académico, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • As machine learning (ML) is increasingly used in software engineering (SE), explainable artificial intelligence (XAI) is crucial for understanding choices made by opaque, "black-box" models. Test case prioritization (TCP) is an important SE problem that can benefit from ML. In this paper, we explore two approaches for generating explanations in ML-based TCP, contrastive and counterfactual XAI, and present application scenarios where they can enhance testers' comprehension of model outputs. Specifically, we use DiCE, a method for generating counterfactual explanations, as an illustrative example and conclude by discussing open issues.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno