Ir al contenido

Documat


Dealing with belief uncertainty in domain models

  • Lola Burgueño [1] Árbol académico ; Paula Muñoz [2] ; Robert Clarisó [1] ; Jordi Cabot [2] Árbol académico ; Sébastien Gérard [3] ; Antonio Vallecillo [2] Árbol académico
    1. [1] Universitat Oberta de Catalunya

      Universitat Oberta de Catalunya

      Barcelona, España

    2. [2] Universidad de Málaga

      Universidad de Málaga

      Málaga, España

    3. [3] CEA List
  • Localización: Actas de las XXVII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2023) / coord. por Amador Durán Toro Árbol académico, 2023
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • There are numerous domains in which information systems need to deal with uncertain information. These uncertainties may originate from different reasons such as vagueness, imprecision, incompleteness or inconsistencies; and, in many cases, they cannot be neglected. In this paper, we are interested in representing and processing uncertain information in domain models, considering the stakeholders’ beliefs (opinions). We show how to associate beliefs to model elements, and how to propagate and operate with their associated uncertainty so that domain experts can individually reason about their models enriched with their personal opinions. In addition, we address the challenge of combining the opinions of different domain experts on the same model elements, with the goal to come up with informed collective decisions. We provide different strategies and a methodology to optimally merge individual opinions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno