Ir al contenido

Documat


A systematic literature review on machine learning applications for agile project management

  • Yadira Jazmín Pérez-Castillo [1] ; Sandra Dinora Orantes-Jiménez [1] ; Patricio Orlando Letelier-Torres [2] Árbol académico
    1. [1] Instituto Politécnico Nacional

      Instituto Politécnico Nacional

      México

    2. [2] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

  • Localización: Ingeniería, investigación y tecnología, ISSN 1405-7743, ISSN-e 2594-0732, Vol. 25, Nº. 3, 2024
  • Idioma: inglés
  • DOI: 10.22201/fi.25940732e.2024.25.3.017
  • Títulos paralelos:
    • Una revisión sistemática de la literatura sobre aplicaciones del aprendizaje automático para la gestión ágil de proyectos
  • Enlaces
  • Resumen
    • español

      Desde el surgimiento de los métodos ágiles, se ha vuelto importante mantener su gestión y monitoreo para tener éxito en el proceso de transformación de un enfoque tradicional a uno ágil. Varios autores han utilizado modelos de aprendizaje automático para apoyar procesos de predicción o estimación en el marco de gestión de proyectos. Sin embargo, existen desafíos actuales y áreas de oportunidad en relación con la gestión de proyectos ágiles en combinación con el aprendizaje automático. Por lo tanto, en este documento, hemos realizado una revisión sistemática de la literatura para comprender el estado actual del aprendizaje automático aplicado a la gestión de proyectos ágiles, con el fin de identificar qué técnicas son actualmente las más utilizadas y así detectar nuevas áreas de oportunidad.

    • English

      Since the rise of agile methods, it has become important to maintain their management and monitoring to succeed in the transformation process from a traditional approach to an agile one. Several authors have used Machine Learnig models to support prediction or estimation processes in the project management framework. However, there are current challenges and areas of opportunity in relation to Agile Project Management in combination with Machine Learning. Therefore, in this paper, we have conducted a Systematic Review of the Literature to understand the current state of Machine Learning applied to Agile Project Management, in order to identify which techniques are currently the most used and thus detect new areas of opportunity.

  • Referencias bibliográficas
    • Abadeer, M.,Sabetzadeh, M.. (2021). Machine learning-based estimation of story points in agile development: Industrial experience and lessons...
    • Arora, M.,Verma, S.,Kavita,Chopra, S.. (2020). A systematic literature review of machine learning estimation approaches in scrum projects....
    • Batarseh, F.,Gonzalez, A.. (2018). Predicting failures in agile software development through data analytics. Software Quality Journal. 26....
    • Bushra, Q.,Kadam, A.. (2021). An improved technique for software cost estimations in agile software development using soft computing techniques....
    • Choetkiertikul, M.,Dam, H.,Tran, T.,Pham, T.,Ghose, A.,Menzies, T.. (2019). A deep learning model for estimating story points. IEEE Transactions...
    • Dam, H.,Tran, T.,Grundy, J.,Ghose, A.,Kamei, Y.. (2019). Towards effective ai-powered agile project management. IEEE/ACM 41st International...
    • Dantas, E.,Costa, A.,Vinicius, M.,Perkusich, M.,Almeida, H.,Perkusich, A.. (2019). An effort estimation support tool for agile software development:...
    • (2023). Digital.ai. The 17th State of Agile Report 17th State of Agile.
    • Dos Santos, R. A.,Vieira, D.,Bravo, A.,Suzuki, L.,Qudah, F.. (2022). A systematic mapping study on the employment of neural networks on software...
    • Dragicevic, S.,Celar, S.,Turic, M.. (2017). Bayesian network model for task effort estimation in agile software development. Journal of Systems...
    • Fernández-Diego, M.,Méndez, E.,González-Ladrón-De-Guevara, F.,Abrahão, S.,Insfran, E.. (2020). An update on effort estimation in agile software...
    • Hanslo, R.,Tanner, M.. (2020). Machine learning models to predict agile methodology adoption. Proceedings of the 2020 Federated Conference...
    • Imran, R.,Soomro, T.. (2022). Mapping of agile processes into project management knowledge areas and processes. International Conference...
    • Jadhav, A.,Kaur, M.,Akter, F.. (2022). Evolution of software development effort and cost estimation techniques: Five decades study using automated...
    • Kitchenham, B.,Charters, S.. (2007). Guidelines for performing systematic literature reviews in software engineering.
    • Kumar, B.,Tiwari, U. K.,Dobhal, D. C.. (2023). Machine learning based approach for user story clustering in agile engineering. SN Computer...
    • Magaña-Martínez, D.,Fernandez-Rodriguez, J. C.. (2015). Artificial intelligence applied to project success: a literature review. International...
    • Malgonde, O.,Chari, K.. (2019). An ensemble-based model for predicting agile software development effort. Empirical Software Engineering....
    • Mamatha, R.,Suma, K. G.. (2021). Role of machine learning in software project management. Journal of Physics: Conference Series. 2040.
    • Pachouly, J.,Ahirrao, S.,Kotecha, K.,Selvachandran, G.,Abraham, A.. (2022). A systematic literature review on software defect prediction using...
    • Periyasamy, K.,Chianelli, J.. (2021). A project tracking tool for scrum projects with machine learning support for cost estimation. EPiC Series...
    • (2017). Project Management Institute A guide to the project management body of knowledge (PMBOK® guide). 6. Project Management Institute.
    • (2017). Project Management Institute. Agile practice guide.
    • Rai, A. K.,Agarwal, S.,Khaliq, M.,Kumar, A.. (2019). Quantitative analysis of development environment risk for agile software through machine...
    • Ramessur, M. A.,Nagowah, S. D.. (2021). A predictive model to estimate effort in a sprint using machine learning techniques. International...
    • Rodríguez-Sánchez, E.,Vázquez-Santacruz, E. F.,Cervantes-Maceda, H.. (2023). Effort and cost estimation using decision tree techniques and...
    • Schwaber, K.,Sutherland, J.. (2020). La Guía Scrum. La Guía Definitiva de Scrum: Las Reglas del Juego.
    • Shamshurin, I.,Saltz, J. S.. (2019). A predictive model to identify Kanban teams at risk. Model Assisted Statistics and Applications. 14....
    • Sousa, A.,Faria, J. P.,Mendes-Moreira, J.. (2021). An analysis of the state of the art of machine learning for risk assessment in software...
    • Srivastava, P.,Srivastava, N.,Agarwal, R.,Singh, P.. (2022). Estimation in agile software development using artificial intelligence. Lecture...
    • Sudarmaningtyas, P.,Mohamed, R.. (2021). A review article on software effort estimation in agile methodology. Pertanika Journal of Science...
    • Sutherland, J.. (2022). Manifesto for Agile Software Development.
    • Tekbulut, T.,Canbaz, N.,Kaya, T. O.. (2020). Machine learning application in LAPIS agile software development process. Turkish National Software...
    • Tiwari, S. P.,Phonsa, G.,Malik, N.. (2024). Estimation approaches of machine learning in scrum projects. Lecture Notes in Networks and Systems....
    • Veido, D.,Misnevs, B.,Plotkin, A.. (2020). The method of agile projects success evaluation using machine learning. Lecture Notes in Networks...
    • William, P.,Kumar, P.,Chhabra, G. S.,Vengatesan, K.. (2021). Task allocation in distributed agile software development using machine learning...
Los metadatos del artículo han sido obtenidos de SciELO México

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno