Jenny Fajardo Calderín , Claudia Cañedo Espino, Alejandro Rosete Suárez
, Antonio David Masegosa Arredondo
, David A. Pelta
Dentro del campo de la optimización existen una serie de problemas llamados NP, que son aquellos que pueden ser resueltos por un algoritmo no determinístico en un tiempo polinomial de resolución. Debido a que el mundo real no es estático, sino dinámico, se crea la necesidad de acercar dichos problemas de prueba a la realidad, de ahí que surgieran los problemas de optimización dinámicos (PODs). Uno de los problemas clásicos de optimización que existen, son los problemas decepcionantes o engañosos, que son problemas de prueba de generación binaria a partir de XOR. Son llamados engañosos porque a los algoritmos les cuesta mucho obtener mejoras, ya que cuando se mejora la solución con una heurística se empeora la evaluación en la función objetivo. En los últimos años ha habido un creciente interés por la modelación de los problemas dinámicos de optimización y su solución con los algoritmos metaheurísticos. Por ello, el objetivo de esta investigación es analizar el comportamiento de las metaheurísticas clásicas frente a los problemas decepcionantes dinámicos, específicamente con cinco funciones decepcionantes y evaluando el rendimiento de los algoritmos aplicando test estadísticos no paramétricos. Además se realiza una comparación de los resultados del mejor algoritmo con dos algoritmos del estado de arte para resolver problemas de optimización dinámicos: Adaptive Hill Climbing Memetic Algorithm y Self Organized Random Immigrants Genetic Algorithm.
In the optimization field there are a number of problems called NP, which are those that can be solved by a nondeterministic polynomial time algorithm for a resolution. Because the real world is not static, but dynamic, the need to bring these problems to test reality is created, hence arise dynamic optimization problems (PODs). One of the classic optimization problems that exist, are disappointing or deceptive problems, which are problems of test generation from binary XOR. They are called deceptive because the algorithms have a hard time getting improvements, because when solution is improved heuristic evaluation worsens the objective function. In recent years there has been an increasing interest in the modeling of dynamic optimization problems and their solution with metaheuristic algorithms. Therefore, the objective of this research is to analyze the behavior of the classical metaheuristics disappointing compared to dynamic problems, specifically with five disappointing functions and evaluating the performance of algorithms using non-parametric statistical test. Furthermore a comparison of the results of the best algorithm with two the state of art algorithms are usually done to solve dynamic optimization: Adaptive Hill Climbing Memetic Algorithm y Self Organized Random Immigrants Genetic Algorithm.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados