Ir al contenido

Documat


Roadmap for Natural Language Generation: Challenges and Insights

  • Autores: María Miró Maestre, Iván Martínez Murillo, Tania J. Martin, Borja Navarro Colorado Árbol académico, Antonio Ferrández Rodríguez Árbol académico, Armando Suárez Cueto Árbol académico, Elena Lloret Pastor Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 74, 2025, págs. 67-79
  • Idioma: inglés
  • Títulos paralelos:
    • Próximos Pasos en la Generación del Lenguaje Natural: Desafíos y Enfoques por Explorar
  • Enlaces
  • Resumen
    • español

      La Inteligencia Artificial Generativa ha crecido exponencialmente debido, en gran medida, a la llegada de los Grandes Modelos del Lenguaje (LLMs). Esta expansión viene impulsada por el increíble rendimiento de los métodos de aprendizaje profundo utilizados en el Procesamiento del Lenguaje Natural (PLN) y su subcampo dedicado a la Generación del Lenguaje Natural (GLN), que supone el foco de este articulo. Algunos LLMs populares como GPT-4, Bard, y herramientas como ChatGPT se han convertido en referentes para abordar diversas tareas propias de la GLN. Este escenario plantea nuevas preguntas sobre el futuro de la GLN y su adaptación a los nuevos desafíos de la era de los LLMs. Para explorar estas cuestiones, el presente articulo analiza una muestra representativa de estudios recientes sobre la GLN, proporcionando así una hoja de ruta de investigación para identificar los aspectos de la GLN que siguen sin abordarse adecuadamente y proponer líneas de investigación que necesitan ser exploradas en profundidad para avanzar en la investigación en GLN.

    • English

      Generative Artificial Intelligence has experienced exponential growth largely due to the advent of Large Language Models (LLMs). This expansion is fueled by the impressive performance of deep learning methods used in Natural Language Processing (NLP) and its subfield, Natural Language Generation (NLG), which is the focus of this paper. Popular LLMs, such as GPT-4, Bard, and tools such as ChatGPT have set benchmarks for addressing various NLG tasks. This scenario raises critical questions regarding the future of NLG and its adaptation to emerging challenges in the LLM era. To explore these issues, the present paper reviews a representative sample of recent NLG surveys, thereby providing the scientific community with a research roadmap to identify NLG aspects that remain inadequately addressed and to suggest areas warranting further in-depth exploration in NLG.

  • Referencias bibliográficas
    • Acar, O. A. 2023. AI prompt engineering isn’t the future. Harvard Business Review. https://hbr.org/2023/06/ai-prompt-engineering-isnt-the-future.
    • Alabdulkarim, A., S. Li, and X. Peng. 2021. Automatic story generation: Challenges and attempts. In N. Akoury, F. Brahman, S. Chaturvedi,...
    • Alhussain, A. I. and A. M. Azmi. 2021. Automatic story generation: A survey of approaches. ACM Computing Surveys (CSUR), 54(5):1–38.
    • Becker, J., J. P. Wahle, B. Gipp, and T. Ruas. 2024. Text generation: A systematic literature review of tasks, evaluation, and challenges....
    • Bratterud, H., M. Burgess, B. T. Fasy, D. L. Millman, T. Oster, and E. Sung. 2020. The sung diagram: Revitalizing the Eisenhower matrix. In...
    • Chandu, K. R. and A. W. Black. 2020. Positioning yourself in the maze of neural text generation: A task-agnostic survey. arXiv preprint arXiv:2010.07279.
    • Chen, H., D. Cai, W. Dai, Z. Dai, and Y. Ding. 2019. Charge-based prison term prediction with deep gating network. In K. Inui, J. Jiang, V....
    • Church, K. and M. Liberman. 2021. The future of computational linguistics: On beyond alchemy. Frontiers in Artificial Intelligence, 4:625341.
    • Dale, R. 2020. Natural language generation: The commercial state of the art in 2020. Natural Language Engineering, 26(4):481–487.
    • Dong, C., Y. Li, H. Gong, M. Chen, J. Li, Y. Shen, and M. Yang. 2022. A survey of natural language generation. ACM Computing Surveys, 55(8):1–38.
    • Dulhanty, C., J. L. Deglint, I. B. Daya, and A. Wong. 2019. Taking a stance on fake news: Towards automatic disinformation assessment via...
    • Erdem, E., M. Kuyu, S. Yagcioglu, A. Frank, L. Parcalabescu, B. Plank, A. Babii, O. Turuta, A. Erdem, I. Calixto, et al. 2022. Neural natural...
    • Garimella, A., A. Amarnath, K. Kumar, A. P. Yalla, N. Anandhavelu, N. Chhaya, and B. V. Srinivasan. 2021. He is very intelligent, she is very...
    • Gatt, A. and E. Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal...
    • Gonçalo Oliveira, H. 2017. A survey on intelligent poetry generation: Languages, features, techniques, reutilisation and evaluation. In J....
    • Goyal, R., P. Kumar, and V. Singh. 2023. A systematic survey on automated text generation tools and techniques: Application, evaluation, and...
    • High-Level Expert Group on AI. 2019. Ethics guidelines for trustworthy AI. Technical report, European Commission. https://digital-strategy....
    • Hovy, D. and S. Prabhumoye. 2021. Five sources of bias in natural language processing. Language and linguistics compass, 15(8):e12432.
    • Ignat, O., Z. Jin, A. Abzaliev, L. Biester, S. Castro, N. Deng, X. Gao, A. E. Gunal, J. He, A. Kazemi, M. Khalifa, N. Koh, A. Lee, S. Liu,...
    • Iqbal, T. and S. Qureshi. 2022. The survey: Text generation models in deep learning. Journal of King Saud University-Computer and Information...
    • Ji, Z., N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung. 2023. Survey of hallucination in natural language...
    • Kitaev, N., L. Kaiser, and A. Levskaya. 2020. Reformer: The efficient transformer. arXiv preprint arXiv:2001.04451.
    • Kybartas, B. and R. Bidarra. 2016. A survey on story generation techniques for authoring computational narratives. IEEE Transactions on Computational...
    • Lu, S., Y. Zhu, W. Zhang, J. Wang, and Y. Yu. 2018. Neural text generation: Past, present and beyond. arXiv preprint arXiv:1803.07133.
    • Maksymov, A. and Y. Tryus. 2022. Combined method of solving time management tasks and its implementation in the decision support system. In...
    • McDonald, D. D. 2010. Natural language generation. In Handbook of natural language processing. Chapman and Hall/CRC.
    • Ministerio para la Transformación Digital y de la Función Pública. 2024. Estrategia de inteligencia artificial 2024. Technical report, Ministerio...
    • Moreno, M. V. 2021. A Discourse-Aware Macroplanning Approach for Text Generation and Beyond. Ph.D. thesis, Universitat d’Alacant/Universidad...
    • Perera, R. and P. Nand. 2017. Recent advances in natural language generation: A survey and classification of the empirical literature. Computing...
    • Rehm, G. and A. Way. 2023. European Language Equality: A Strategic Agenda for Digital Language Equality. Springer Nature.
    • Reiter, E. 1994. Has a consensus NL generation architecture appeared, and is it psycholinguistically plausible? In Proceedings of the Seventh...
    • Santhanam, S. and S. Shaikh. 2019. A survey of natural language generation techniques with a focus on dialogue systemspast, present and future...
    • Shmueli, B., J. Fell, S. Ray, and L.-W. Ku. 2021. Beyond fair pay: Ethical implications of NLP crowdsourcing. arXiv preprint arXiv:2104.10097.
    • Tang, C., F. Guerin, and C. Lin. 2022. Recent advances in neural text generation: A task-agnostic survey. arXiv preprint arXiv:2203.03047.
    • Thirunavukarasu, A. J., D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F. Tan, and D. S. W. Ting. 2023. Large language models in medicine....
    • Topal, M. O., A. Bas, and I. van Heerden. 2021. Exploring transformers in natural language generation: GPT, BERT, and XLNet. arXiv preprint...
    • Trabelsi, M., Z. Chen, B. D. Davison, and J. Heflin. 2021. Neural ranking models for document retrieval. Information Retrieval Journal, 24(6):400–444.
    • Vashishtha, A., K. Ahuja, and S. Sitaram. 2023. On evaluating and mitigating gender biases in multilingual settings. In A. Rogers, J. Boyd-Graber,...
    • Vítores, D. F. 2024. El español: Una lengua viva. Informe 2024. Centro Virtual Cervantes.
    • White, J., Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C. Schmidt. 2023. A prompt pattern catalog...
    • Xu, F., H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu. 2019. Explainable AI: A brief survey on history, research areas, approaches and...
    • Yu, W., C. Zhu, Z. Li, Z. Hu, Q. Wang, H. Ji, and M. Jiang. 2022. A survey of knowledge-enhanced text generation. ACM Computing Surveys, 54(11s):1–38.
    • Zhang, H., H. Song, S. Li, M. Zhou, and D. Song. 2023. A survey of controllable text generation using transformer-based pre-trained language...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno