Ir al contenido

Documat


Efectos de la Sustitución Parcial de Cemento por Ceniza de Bagazo de Caña de Azúcar en el Asentamiento y Resistencia a la Compresión del Concreto

  • Huillca, Adan [1] ; Rodríguez, Wilder [1]
    1. [1] Universidad San Ignacio de Loyola

      Universidad San Ignacio de Loyola

      Perú

  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 54, Nº. 2, 2024 (Ejemplar dedicado a: Revista Politécnica), págs. 109-117
  • Idioma: español
  • DOI: 10.33333/rp.vol54n2.10
  • Títulos paralelos:
    • Effects of Partial Replacement of Cement by Sugarcane Bagasse Ash on the Settlement and Compressive Strength of Concrete
  • Enlaces
  • Resumen
    • español

      La industria de la construcción, clave en economías emergentes, emite cerca del 30 % de las emisiones globales de CO2. El cemento, esencial en el concreto, representa hasta el 15 % del volumen total y emite alrededor del 7 % de CO2. Por ello, es importante la búsqueda de alternativas de reemplazo como las cenizas de bagazo de caña de azúcar CBCA. En esta investigación, se realizaron mezclas con diferentes porcentajes de CBCA (0 %, 5 %, 10 %, 15 % y 20 %), previo al mezclado se caracterizó cuidadosamente los agregados y la CBCA, posteriormente se prepararon moldes de concreto en cilindros de 10x20 cm, al mismo tiempo de la preparación de los moldes se realizó el ensayo de Slump. A los 7, 14 y 28 días de curado, se realizó el ensayo a compresión de los moldes de concreto.  Los resultados arrojan que la mezcla al 5 % mostró un mayor asentamiento, sin embargo, a medida se incrementa el porcentaje de CBCA el asentamiento tiende a descender. Por otro lado, la resistencia a la compresión a los 28 días, la mezcla con 0 % alcanzó 177,47 kg/cm2, superando los 175 kg/cm2 de diseño. Con 5 % de CBCA, la resistencia promedio fue de 136,07 kg/cm2, para 10 % de 124,1 kg/cm2, para 15 % de 97,75 kg/cm2 y para 20 % de 69,84 kg/cm2. Se concluye que tanto el asentamiento como la resistencia están directamente relacionados al grado del valor de superficie especifica, gravedad específica y temperatura de combustión. Se recomienda el uso de CBCA en un 5 %, con áreas específicas mayores 3 000 cm2/g, gravedades mayores de 2 000 kg/m3 y una temperatura de combustión de entre 500-750 °C para la asegurar la obtención de partículas amorfas.

    • English

      The construction industry, crucial to emerging economies, emits approximately 30 % of global CO2 emissions. Cement, essential in concrete production, accounts for up to 15 % of the total volume, yet its manufacture releases around 7 % of CO2. It is therefore important to look for replacement alternatives such as sugarcane bagasse CBCA ash. In this investigation, mixtures were made with different percentages of CBCA (0 %, 5 %, 10 %, 15 % and 20 %), before mixing the aggregates and CBCA were carefully characterized, concrete molds were subsequently prepared in 10x20 cm cylinders, at the same time of the preparation of the molds the Slump test was carried out. At 7, 14 and 28 days of curing, the compression test of the concrete molds was performed.  The results show that the 5% mixture showed a greater settlement, however, as the percentage of CBCA increases the settlement tends to decline. On the other hand, the compression strength at 28 days, the mixture with 0 % reached 177,47 kg/cm2, exceeding 175 kg/cm2 design. With 5 % CBCA, the average resistance was 136,07 kg/cm2, for 10 % 124,1 kg/cm2, for 15 % 97,75  kg/cm2 and for 20 % 69,84 kg/cm2. It is concluded that both settlement and resistance are directly related to the degree of specific surface value, specific gravity and combustion temperature. The use of CBCA is recommended in 5 %, with specific areas greater than 3 000 cm2/g, gravities greater than 2 000 kg/m3 and a combustion temperature of between 500-750 °C to ensure the obtaining of amorphous particles.

  • Referencias bibliográficas
    • Abebaw, G., Bewket, B., & Getahun, S. (2021). Experimental Investigation on Effect of Partial Replacement of Cement with Bamboo Leaf Ash...
    • ACI. (1977). Recommended practice for selecting proportions for normal and heavyweight concrete (ACI 211.1-77). Detroit: The Institute, 1977,...
    • Arif, R., Khitab, A., Kirgiz, M. S., Khan, R. B. N., Tayyab, S., Khan, R. A., Anwar, W., & Arshad, M. T. (2021). Experimental analysis...
    • ASTM International. (1999). ASTM C39/C39M-99 –Test Method for Compressive Strength of Cylindrical Concrete Specimens: Vol. 04.02. ASTM International....
    • ASTM International. (2014). ASTM C192/C192M-14—Practice for Making and Curing Concrete Test Specimens in the Laboratory: Vol. 04.02. ASTM...
    • ASTM International. (2018). ASTM C33/C33M – 18, Standard Specification for Concrete Aggregates: Vol. 04.02. ASTM International. http://www.astm.org/cgi-bin/resolver.cgi?C33C33M-18
    • ASTM International. (2020). ASTM C143/C143M-20 – Test Method for Slump of Hydraulic-Cement Concrete. ASTM International. http://www.astm.org/cgi-bin/resolver.cgi?C143C143M-20
    • ASTM International. (2021). ASTM C125-21a – Terminology Relating to Concrete and Concrete Aggregates: Vol. 04.02. ASTM International. http://www.astm.org/cgi-bin/resolver.cgi?C125-21A
    • ASTM International. (2024). ASTM C31/C31M-24 – Practice for Making and Curing Concrete Test Specimens in the Field: Vol. 04.02. ASTM International....
    • Bahurudeen, A., & Santhanam, M. (2015). Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash....
    • Bahurudeen, A., Wani, K., Basit, M. A., & Santhanam, M. (2016). Assesment of Pozzolanic Performance of Sugarcane Bagasse Ash. Journal...
    • Basha, C., Diriba, A., Fekadu, H., Tamiru, B., & Biranu, A. (2022). Evaluating Bagasse Ash as Partial Cement Replacement Material. https://doi.org/10.20944/preprints202208.0538.v1
    • Bhat, J. A. (2021). Mechanical behaviour of self compacting concrete: Effect of wood ash and coal ash as partial cement replacement. Materials...
    • Bheel, N., Memon, A. S., Khaskheli, I. A., Talpur, N. M., Talpur, S. M., & Khanzada, M. A. (2020). Effect of Sugarcane Bagasse Ash and...
    • Chindaprasirt, P., Sujumnongtokul, P., & Posi, P. (2019). Durability and Mechanical Properties of Pavement Concrete Containing Bagasse...
    • Choudhary, R., Gupta, R., & Nagar, R. (2020). Impact on fresh, mechanical, and microstructural properties of high strength self-compacting...
    • Chulim, D., Tello, A., & Trejo, D. (2019). Propiedades físico-Mecánicas del concreto con sustitución parcial de Ceniza de Bagazo de Caña...
    • El-said, A., Awad, A., Ahmad, M., Sabri, M. M. S., Deifalla, A. F., & Tawfik, M. (2022). The Mechanical Behavior of Sustainable Concrete...
    • Farfan, M. G., & Pastor, H. H. (2018). Ceniza de bagazo de caña de azúcar en la resistencia a la compresión del concreto. UCV HACER, 7(3)....
    • Gupta, C. K., Sachan, A. K., & Kumar, R. (2021). Examination of Microstructure of Sugar Cane Bagasse Ash and Sugar Cane Bagasse Ash Blended...
    • Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2022). Processing of sugar cane bagasse ash and properties of processed sugar cane...
    • Memon, S. A., Khan, S., Wahid, I., Shestakova, Y., & Ashraf, M. (2020). Evaluating the Effect of Calcination and Grinding of Corn Stalk...
    • Minnu, S. N., Bahurudeen, A., & Athira, G. (2021). Comparison of sugarcane bagasse ash with fly ash and slag: An approach towards industrial...
    • Mulye, P. (2021). Experimental Study on Use of Sugar Cane Bagasse Ash in Concrete by Partially Replacement with Cement. International Journal...
    • Murugesan, T., Vidjeapriya, R., & Bahurudeen, A. (2020). Sugarcane Bagasse Ash-Blended Concrete for Effective Resource Utilization Between...
    • Prabhath, N., Kumara, B. S., Vithanage, V., Samarathunga, A. I., Sewwandi, N., Maduwantha, K., Madusanka, M., & Koswattage, K. (2022)....
    • Praveenkumar, S., Sankarasubramanian, G., & Sindhu, S. (2020). Strength, permeability and microstructure characterization of pulverized...
    • Quedou, P. G., Wirquin, E., & Bokhoree, C. (2021). Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in...
    • Rambabu, P., Aditya, G., & Ramarao, G. (2015). Effect of Acidic Environment (HCL) on Concrete With Sugarcane Bagasse Ash As Pozzolona....
    • Rosseira, A., Sarbini, N. N., Ibrahim, I. S., Shukor Lim, N. H. A., Mohd Sam, A. R., & Nazira Ab.Karim, N. F. (2018). Overview of the...
    • Rukzon, S., & Chindaprasirt, P. (2012). Utilization of bagasse ash in high-strength concrete. Materials & Design, 34, 45-50. https://doi.org/10.1016/j.matdes.2011.07.045
    • Sakib, N., Hasan, R., Mutalib, A. A., Jamil, M., Raman, S. N., & Kaish, A. B. M. A. (2023). Utilization of Sugar Mill Waste Ash as Pozzolanic...
    • Seddik, M., Thaloor, P., & Sekar, M. (2022). Properties of Sugarcane Bagasse Ash Concrete Modified with Bacterial Treatment. ACI Materials...
    • eyoum, R., Tesfamariam, B. B., Andoshe, D. M., Algahtani, A., Ahmed, G. M. S., & Tirth, V. (2021). Investigation on Control Burned of...
    • Zhang, L., Liu, B., Du, J., Liu, C., & Wang, S. (2019). CO2 emission linkage analysis in global construction sectors: Alarming trends...
    • Zhao, Y., Chen, M., Zhao, Z., & Yu, S. (2015). The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno