Ir al contenido

Documat


Modelado y Simulación de Sistemas de Control Predictivos para la Generación Eléctrica en Redes Inteligentes

  • Checa, Gabriel [1] ; Cabrera, Ana [2] ; Sampietro, José [2] ; Valencia, Nakira [3] ; Ulloa, Raúl [3]
    1. [1] Pontificia Universidad Católica del Ecuador

      Pontificia Universidad Católica del Ecuador

      Quito, Ecuador

    2. [2] Universidad Tecnológica Ecotec

      Universidad Tecnológica Ecotec

      Guayaquil, Ecuador

    3. [3] Universidad Técnica Luis Vargas Torres, Facultad de Ingenierías, Esmeraldas, Ecuador
  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 54, Nº. 2, 2024 (Ejemplar dedicado a: Revista Politécnica), págs. 7-20
  • Idioma: español
  • DOI: 10.33333/rp.vol54n2.01
  • Títulos paralelos:
    • Modeling and Simulation of Predictive Control Systems for Power Generation in Smart Grids
  • Enlaces
  • Resumen
    • español

      Las redes eléctricas inteligentes (RI) son reconocidas como un componente tecnológico fundamental para enfrentar el aumento de la demanda energética, mejorando la confiabilidad y sostenibilidad de los sistemas eléctricos. El presente estudio incluye en la RI elementos de almacenamiento que permiten disminuir la potencia suministrada por las fuentes de generación principales durante las horas de mayor demanda. Esto asegura que la demanda siempre se cubra y a la vez que se opera dentro de los rangos de mayor eficiencia. Se propone el uso de la herramienta de cómputo Matlab, mediante el Toolbox de YALMIP, enfocado en la modelización y resolución de problemas de optimización y control, para desarrollar una estrategia de Control Predictivo de Modelos (MPC) que gestione los recursos energéticos de una RI y permita cumplir la demanda de energía, y que respete las restricciones del controlador. Se destaca el uso de tres fuentes de generación, dentro de las cuales dos son consideradas principales, siendo las mismas: la energía eólica y energía solar y la tercera es considerada como un sistema de almacenamiento conformado por baterías. Los resultados indican que al incorporar un MPC, podremos disminuir los costes de generación, derivados del maximizar la vida útil de los elementos y del almacenar energía durante el periodo de producción.

       

    • English

      Smart Grids (SG) are recognized as a fundamental technological component to address the increase in energy demand, improving the reliability and sustainability of electricity systems. The present study includes in the SG storage elements that allow decreasing the power delivered by the main generation sources during peak demand hours. This ensures that the demand is always met while operating within the highest efficiency ranges. The use of the Matlab computational tool, through the YALMIP Toolbox, focused on modeling and solving optimization and control problems, is proposed to develop a Model Predictive Control (MPC) strategy that manages the energy resources of an SG and allows meeting the energy demand, and respects the controller constraints. The use of three generation sources is highlighted, two of which are considered to be the main ones, being wind and solar energy, and the third one is considered to be a storage system made up of batteries. The results indicate that by incorporating an MPC, we will be able to reduce generation costs, derived from maximizing the useful life of the elements and storing energy during the production period.

  • Referencias bibliográficas
    • Abril, S. O., León, J. A. P., & Mendoza, J. O. G. (2021). STUDY OF THE BENEFIT OF SOLAR ENERGY THROUGH THE MANAGEMENT OF PHOTOVOLTAIC...
    • Ahmad, A., & Khan, J. Y. (2020). Real-Time Load Scheduling, Energy Storage Control and Comfort Management for Grid-Connected Solar Integrated...
    • Ahmed, M., Harbi, I., Kennel, R., Heldwein, M. L., Rodríguez, J., & Abdelrahem, M. (2022). Performance Evaluation of PV Model-Based Maximum...
    • Arce, A., Real, A., & Bordons, C. (2014). Combined environmental and economic dispatch of smart grids using distributed model predictive...
    • Basit, A., Sarosh, A., Ahmed, O. A. A., Shuaib, H., & Khan, A. R. (2024). Performance Characterization of EEEC (Eolic Energy Unit) for...
    • Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Peñalba, M., & Gomis-Bellmunt, O. (2019). Active and Reactive Power Control of a PV Generator...
    • Carignano, M., Adorno, R., van Dijk, N., Nieberding, N., Nigro, N., & Orbaiz, P. (2016, junio 19). Assessment of Energy Management Strategies...
    • Carignano, M., Roda, V., Costa-Castelló, R., Valiño, L., Lozano, A., & Barreras, F. (2019). Assessment of Energy Management in a Fuel...
    • De Battista, H., Mantz, R. J., & Garelli, F. (2006). Power conditioning for a wind–hydrogen energy system. Journal of Power Sources, 155(2),...
    • Del Real, A. J., Arce, A., & Bordons, C. (2014). Combined environmental and economic dispatch of smart grids using distributed model predictive...
    • Freire, V. A., De Arruda, L. V. R., Bordons, C., & Márquez, J. J. (2020). Optimal Demand Response Management of a Residential Microgrid...
    • Halvgaard, R., Vandenberghe, L., Poulsen, N. K., Madsen, H., & Jørgensen, J. B. (2016). Distributed Model Predictive Control for Smart...
    • Hu, J., Shan, Y., Guerrero, J. M., Ioinovici, A., Chan, K. W., & Rodriguez, J. (2021). Model predictive control of microgrids – An overview....
    • Jia, Y., & Sun, C. (2017). Distributed MPC with application to AGC of power system with wind-photovoltaic hybrid generation. 2017 36th...
    • Johnson, V. H. (2002). Battery performance models in ADVISOR. Journal of Power Sources, 110(2), 321-329. https://doi.org/10.1016/S0378-7753(02)00194-5
    • Kim, D., Wang, Z., Brugger, J., Blum, D., Wetter, M., Hong, T., & Piette, M. A. (2022). Site demonstration and performance evaluation...
    • Li, C., Spataru, S. V., Zhang, K., Yang, Y., & Wei, H. (2020). A Multi-State Dynamic Thermal Model for Accurate Photovoltaic Cell Temperature...
    • Lubosny, Z. (2003). Wind Turbine Operation in Electric Power Systems: Advanced Modeling. Springer. https://doi.org/10.1007/978-3-662-10944-1
    • Ma, A., Wu, T., & Liu, H. (2019). A Model Predictive Control for Maximum Power Point Tracking of Wind Energy Conversion Systems. Proceedings...
    • Ma, J., Qin, J., Salsbury, T., & Xu, P. (2012). Demand reduction in building energy systems based on economic model predictive control....
    • Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L., & Huang, H. (2020). Classification and summarization of solar photovoltaic MPPT techniques:...
    • Montoya, Y., Ramírez, E., Pérez, T., Rujano, L., & Pérez, N. (2015). Estado del arte de smart grig: Parte I. Revista Ingeniería al Día,...
    • Kirn Kumar N., Indra Gandhi, V., Ravi, L., Vijayakumar, V. & Subramaniyaswamy, V. (2020). Improving security for wind energy systems in...
    • Nassourou, M. (2021). Robust Economic Model Predictive Control of Smart Grids [Tesis doctoral, Universitat Politècnica de Catalunya]. https://futur.upc.edu/32056680
    • Nassourou, M., Blesa, J., & Puig, V. (2018). Optimal energy dispatch in a smart micro-grid system using economic model predictive control....
    • Natsheh, E. M., Albarbar, A., & Yazdani, J. (2011). Modeling and control for smart grid integration of solar/wind energy conversion system....
    • Oshnoei, A., Kheradmandi, M., Khezri, R., & Mahmoudi, A. (2021). Robust Model Predictive Control of Gate-Controlled Series Capacitor for...
    • Phang, J. C. H., Chan, D. S. H., & Phillips, J. R. (1984). Accurate analytical method for the extraction of solar cell model parameters....
    • Poursmaeil, B., Hosseinpour Najmi, P., & Najafi Ravadanegh, S. (2021). Interconnected-energy hubs robust energy management and scheduling...
    • Ravat, A. K., Dhawan, A., & Tiwari, M. (2021). LMI and YALMIP: Modeling and Optimization Toolbox in MATLAB. En D. Harvey, H. Kar, S. Verma,...
    • Segovia, P., Rajaoarisoa, L., Nejjari, F., Duviella, E., & Puig, V. (2019). Model predictive control and moving horizon estimation for...
    • Shi, Y., Tuan, H. D., Savkin, A. V., Duong, T. Q., & Poor, H. V. (2019). Model Predictive Control for Smart Grids With Multiple Electric-Vehicle...
    • Shi, Y., Tuan, H. D., Savkin, A. V., Lin, C.-T., Zhu, J. G., & Poor, H. V. (2021). Distributed model predictive control for joint coordination...
    • Sun, D., Jamshidnejad, A., & De Schutter, B. (2023). Optimal Sub-References for Setpoint Tracking: A Multi-level MPC Approach. 22nd IFAC...
    • Vardhan, B. V. S., Khedkar, M., & Srivastava, I. (2022). Effective energy management and cost effective day ahead scheduling for distribution...
    • Velasquez, M. A., Quijano, N., Cadena, A. I., & Shahidehpour, M. (2021). Distributed stochastic economic dispatch via model predictive...
    • Wang, Y. (2018). Advances in state estimation, diagnosis and control of complex systems [Ph.D. Thesis, Universitat Politècnica de Catalunya]....
    • Wang, Y., Puig, V., & Cembrano, G. (2017). Non-linear economic model predictive control of water distribution networks. Journal of Process...
    • Wenzhong Gao. (2005). Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain. IEEE...
    • Yelisetti, S., Kumar, R., Gupta, V., Saxena, A., & Lamba, R. (2020). Modelling and Analysis of Home Energy Management System Using Intelligent...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno