Ir al contenido

Documat


Artificial Lift Gas Flow Control System for Oil-Producing Wells

  • Ronceros, Cristhian [1] ; Usquiano , Luis [2] ; León , Cesar [1] ; Pinto, Joseph [2] ; Martínez , Yuselys [2]
    1. [1] Universidad Tecnológica del Perú

      Universidad Tecnológica del Perú

      Perú

    2. [2] Universidad Privada San Juan Bautista

      Universidad Privada San Juan Bautista

      Perú

  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 54, Nº. 2, 2024 (Ejemplar dedicado a: Revista Politécnica), págs. 55-64
  • Idioma: inglés
  • DOI: 10.33333/rp.vol54n2.05
  • Títulos paralelos:
    • Sistema de Control de Flujo de Gas para Pozos Productores de Petróleo Mediante Elevación Artificial
  • Enlaces
  • Resumen
    • español

      La investigación se orientó al desarrollo de un sistema de control de flujo para pozos productores de petróleo mediante Levantamiento Artificial por Gas utilizando Sistema de Adquisición de Datos en Red (Net-DAS), para optimizar las operaciones realizadas por las Unidades Terminales Remotas (RTU) ubicadas en las cabinas de control. cercanas a los pozos productores de petróleo. El estudio se limitó a los pozos Gas Lift del Campo Carito de Petróleos de Venezuela. S.A. (PDVSA). La variable a medir es el flujo de gas que se inyecta en dichos pozos a través de una válvula de control que es activada por un actuador que trabaja en cuatro estados de operación en el Net-DAS. Sin embargo, variables como la presión y la temperatura también pueden ser visualizadas desde el Sistema de Supervisión, Control y Adquisición de Datos (SCADA). El sistema de control propuesto se basa en la RTU LinPAC-8381 con arquitectura Net DAS. La propuesta permite establecer un control local migrando la lógica de control del Controlador Lógico Programable (PLC) a la arquitectura Net-Das, lo que habilita al operador de la planta a gestionar en cuatro estados para controlar la cantidad de flujo a inyectar en el pozo: control local y control remoto, que a su vez se divide en manual, automático y control remoto optimizado, que maximiza la extracción de crudo.

    • English

      The research was geared toward the development of a flow control system for oil-producing wells through artificial gas lift using the Network Data Acquisition System (Net-DAS), to optimize the operations carried out by Remote Terminal Units (RTU) located in the control cabins near oil producing wells. The study was limited to the Gas Lift wells in the Carito field of Petroleos de Venezuela. S.A. (PDVSA). The variable to be measured is the gas flow that is injected into said wells through a control valve that is activated by an actuator that works in four operating states in the Net-DAS. However, variables such as pressure and temperature can also be viewed from the Supervisory Control and Data Acquisition (SCADA) system. The proposed control system is based on the LinPAC-8381 RTU with Net DAS architecture. The proposal enables the establishment of a local control by migrating the programming logic controller (PLC) control logic to the Net-Das architecture. This allows the plant operator to work in four states to control the amount of flow to be injected into the well: local control and remote control, which in turn is divided into manual, automatic and optimized remote control, which maximizes the extraction of crude oil.

  • Referencias bibliográficas
    • Al-Naumani, Y., & Rossiter, J. (2016). Gas phase train in upstream oil & gas fields: Part-II disturbances impact study. Proccedings...
    • Cotrina, M (2018). Instrumentation design for the automation and control system of the bio-fuel supply and dispatch plant in the Puerto Maldonado...
    • Chakraborty, K., Choudhury, M., Das, D., & Paul, S. (2020). Development of PLC-SCADA based control strategy for water storage in a tank...
    • Chaparro, J., Barrera, N., & León, F. (2021). Remote Terminal Module, for data acquisition, monitoring and control of Agroindustrial processes...
    • Chan, D. (2015). Development of the ALBA Guardian Comprehensive System for the supervision and control of the Jusepín200 Compressor Plant...
    • Diaz, J. (2019). Design of a control system based on Scada in a compressed natural gas decompression station for the reduction of production...
    • Galloway, B., & Hanckee, G. (2013). Introduction to Industrial Control Networks, IEEE Communications Surveys & Tutorials, 15(2): 860-880,...
    • García, M., Irisarri, E., Pérez, F., Estévez, E., & Marcos, M. (2018). Automation Architecture Based on Cyber-Physical Systems for Flexible...
    • Gulyaev, S., Pashchenko, F., & Pashchenko, A. (2015). Smart control system of gas wells claster providing a mode of maximum pressure,...
    • Inzunza, B., Wright, C., Ghys, T., & Cools, P. (2020). Imaginaries of Robotization: Automation from the employee's perspective. Sociological...
    • Kiangala, K., & Wang, Z. (2019). An Industry 4.0 approach to develop auto parameter configuration of a bottling process in a small to...
    • Li, S., Liu, X., Song, S., & Cai, Z. (2022). Design and implementation of integrated monitoring system for product oil depot. Proccedings...
    • Liu, Y., Sun, L, Zhao, Y., & Zhang, Y. (2018). Active disturbance rejection control for closed-loop gas flow facilities, 2018. Proccedings...
    • Lu, H., Zhang, H., Luo, E., & Li, Y. (2022). Optimal Operation of Integrated Gas and Power System Considering Gas Turbine Nonlinearity...
    • MGCIP (1999). Management Guide for capital investment projects. Caracas: PDVSA Operations Committee. http://santp.pdvsa.com
    • Nicolae, N., Popescu, M., & Patrascioiu, C. (2019). Implementation of Advanced Process Control in Refineries. Proccedings of the 23rd...
    • Pashchenko, F., Gulyaev, S., Pashchenko, A., & Khizhinskaya, I. (2022). Simulation of the Gas Production Process at the Field under Restrictions...
    • Pino, J. (2013). Automation and control proposal for the salt water injection plant of the Bared- 8 discharge station, belonging to the Macura...
    • Ronceros, C., & Pomblas. R. (2023). Reliability, Availability and Operational Maintainability Model for a Gas Compression Plant. Revista...
    • Ronceros, C., Medina, J., Vásquez, J., León, P., Fernández, J., & Urday, E. (2023a). Supervision and Control System of the Operational...
    • Ronceros, C., Pomblas, R., & Salazar, J. (2023b). Automation of the Medium Crude Dehydration System of a Flow Station. Revista Politécnica,...
    • Ronceros, C., & Pomblas, R. (2022). Automated system for monitoring the consumption of regenerated glycol supplied to the natural gas...
    • Ronceros, C. (2022). Reliability, availability and maintainability modeling of the telecommunications and data transmission platform. Revista...
    • Slabinoha, M., Krynytsky, O., Klochko, N., Melnychuk, S., Kuchirka, Y., & Manuliak, I. (2021). Software Development for the Monitoring...
    • Tomar, B., & Kumar, N. (2020). PLC and SCADA based Industrial Automated System. Proccedings of the 2020 IEEE International Conference...
    • Villalba, E. (2019). Development and analysis of a DCS system and industrial protocols. National University of San Agustin of Arequipa. [Master's...
    • Viraktamath, S., Umarfarooq, A., Yallappagoudar, V., & Hasankar; A. (2020). Implementation of automated bottle filling system using PLC....
    • Wu, Y., Cao, K., & Yang, C. (2022). Design of Electric Actuator Control System Based on Internet of Things, 2022. Proccedings of the 4th...
    • Yu, H., & Xue, Y. (2022). Research on PLC Technology of Electrical Engineering Automation Control Based on Artificial Intelligence. IEEE...
    • Zhang, H., Wang, H., Li, Z., & Zhang, R. (2019). Design of monitor and control system of experimental facility for oil-gas-water multi-phase...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno