Ir al contenido

Documat


Improvement of the Physical Properties of Polybutylsuccinate Using Stabilizers of Vegetable and Synthetic Origin

  • Flores, Ana [1] ; Carrera, Santiago [2] ; Palmay , Paul [2] ; Jácome, Hugo [2]
    1. [1] Universidad Técnica de Ambato

      Universidad Técnica de Ambato

      Ambato, Ecuador

    2. [2] Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuador
  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 55, Nº. 1, 2025 (Ejemplar dedicado a: Revista Politécnica), págs. 71-82
  • Idioma: inglés
  • DOI: 10.33333/rp.vol55n1.07
  • Títulos paralelos:
    • Mejoramiento de las Propiedades Físicas del Polibutilsuccinato Usando Estabilizantes de Origen Vegetal y Sintético
  • Enlaces
  • Resumen
    • español

      La producción de residuos plásticos no degradables ha generado una problemática ambiental bastante grave lo que provoca la búsqueda de polímeros biodegradables que puedan reemplazar a estos plásticos. Uno de estos es el polibutilsuccinato (PBS) que se caracteriza por su buena trabajabilidad, alta resistencia tanto térmica como química, así como alta biocompatibilidad comparable al polietileno. El presente estudio tiene como objetivo el mejoramiento de las propiedades físicas del PBS sintetizado por condensación adicionando estabilizantes vegetales y sintéticos. Se analizó la degradación térmica que sufre el material mediante análisis termogravimétrico y la reología del biopolímero mediante reología rotacional frente a condiciones de trabajo de extrusión para perfiles. Para esto se preparó probetas con polvo de cáscara de patata, ácido ferúlico y luperox. El estudio confirmó que la adición del 5 % en masa de polvo de cáscara de patata al PBS mejora su estabilidad térmica, logró alcanzar valores de velocidad de cizalla para su procesabilidad por extrusión y brinda una oportunidad para copolimerizarse, de tal manera que su uso sea viable.

    • English

      The production of non-degradable plastic waste has generated serious environmental problems, which has motivated the search for biodegradable polymers that can replace plastics. One of these is polybutylsuccinate (PBS), which is characterized by good workability, high thermal and chemical resistance, and high biocompatibility comparable to polyethylene. The objective of this study was to improve the physical properties of PBS synthesized by condensation by adding vegetables and synthetic stabilizers. The thermal degradation suffered by the material was analyzed by thermogravimetric analysis, and the rheology of the biopolymer by rotational rheology against extrusion working conditions. The test tubes were prepared using potato peel powder, ferulic acid, and luperox. The study confirmed that the addition of 5 % by mass of potato peel powder to PBS improves its thermal stability, achieves shear rate values for its processability by extrusion to profiles, and provides an opportunity to copolymerize, in such a way that its use is viable.

  • Referencias bibliográficas
    • Abderrahim, B., Abderrahman, E., Mohamed, A., Fatima, T., Abdesselam, T., & Krim, O. (2015). Kinetic Thermal Degradation of Cellulose,...
    • Aliotta, L., Seggiani, M., Lazzeri, A., Gigante, V., & Cinelli, P. (2022). A brief review of Poly (Butylene Succinate) (PBS) and its main...
    • Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydrate Polymers,...
    • Bajwa, D. S., Pourhashem, G., Ullah, A. H., & Bajwa, S. G. (2019). A concise review of current lignin production, applications, products...
    • Barletta, M., Aversa, C., Ayyoob, M., Gisario, A., Hamad, K., Mehrpouya, M., & Vahabi, H. (2022). Poly(butylene succinate) (PBS): Materials,...
    • Barrino, F., De La Rosa-Ramírez, H., Schiraldi, C., López-Martínez, J., & Samper, M. D. (2023). Preparation and Characterization of New...
    • Cecchi, T. (2021). Biocomposites from Food Waste BT - Biobased Products from Food Sector Waste: Bioplastics, Biocomposites, and Biocascading...
    • Cottom, J. W., Cook, E., & Velis, C. A. (2024). A local-to-global emissions inventory of macroplastic pollution. Nature, 633(September)....
    • Dekker, M. (2005). Handbook Of Polymer Synthesis.
    • Emami, S. H., Salovey, R., & Hogen-Esch, T. E. (2002). Peroxide-mediated crosslinking of poly(ethylene oxide). Journal of Polymer Science,...
    • Fodil Cherif, M., Trache, D., Benaliouche, F., Tarchoun, A. F., Chelouche, S., & Mezroua, A. (2020). Organosolv lignins as new stabilizers...
    • Fujimaki, T. (1998). Processability and properties of aliphatic polyesters, “BIONOLLE”, synthesized by polycondensation reaction. Polymer...
    • García, H., Jaime-Fonseca, M., Borries-Medrano, E., & Vieyra, H. (2020). Extrusion parameters to produce a PLA-starch derived thermoplastic...
    • Georgousopoulou, I.-N., Vouyiouka, S., Dole, P., & Papaspyrides, C. D. (2016). Thermo-mechanical degradation and stabilization of poly(butylene...
    • Hiller, B. T., Azzi, J. L., & Rennert, M. (2023). Improvement of the Thermo-Oxidative Stability of Biobased Poly(butylene succinate) (PBS)...
    • Huang, C. L., Jiao, L., Zhang, J. J., Zeng, J. B., Yang, K. K., & Wang, Y. Z. (2012). Poly(butylene succinate)-poly(ethylene glycol) multiblock...
    • Joshi, A., Sethi, S., Arora, B., Azizi, A. F., & Thippeswamy, B. (2020). Potato Peel Composition and Utilization BT - Potato: Nutrition...
    • Karthikumar, S., Kumar R, S., B, J., T, S., & Devi M, Y. (2024). Present trends and prospects of synthetic and bio-plasticizers. In I....
    • Kuo, W. R., Huang, J. J., Fujimoto, N., & Lin, H. C. (2018). Physicochemical Properties of Biochar Derived from Agricultural and Forestry...
    • Ladin, D., Park, C. B., Park, S. S., Naguib, H. E., & Cha, S. W. (2001). Study of Shear and Extensional Viscosities of Biodegradable PBS/CO2...
    • Marek, A. A., Verney, V., Totaro, G., Sisti, L., Celli, A., Cionci, N. B., Di Gioia, D., Massacrier, L., & Leroux, F. (2020). Organo-modified...
    • Martínez, L., Montes, I., Rivera, N., Díaz, I., Pérez, E., & Waldo, M. (2020). Thermal degradation of polypropylene reprocessed in a co-rotating...
    • Marturano, V., Marotta, A., Agustin, S., Ambrogi, V., & Cerruti, P. (2023). Progress in Materials Science Recent advances in bio-based...
    • Mathew, A. P., Chakraborty, A., Oksman, K., & Sain, M. (2006). The structure and mechanical properties of cellulose nanocomposites prepared...
    • Mattos, A., Crocitti, A., & Carvalho, L. H. De. (2020). Properties of Biodegradable Films Based on.
    • Mezger, T. (2002). The Rheology Handbook_ For Users of Rotational and Oscillatory Rheometers (Issue October).
    • Miranzadeh, N., Najafi, M., & Ataeefard, M. (2024). Production of biodegradable packaging film based on PLA/starch: optimization via response...
    • Muthuraj, R., Misra, M., & Mohanty, A. K. (2014). Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends:...
    • Nanni, A., Ricci, A., Versari, A., & Messori, M. (2020). Wine derived additives as poly(butylene succinate) (PBS) natural stabilizers...
    • Olumurewa, J. A. V., Tobi, A., & Umuze, K. O. (2022). The use of agricultural wastes as biopolymers for food packaging. Regional Food...
    • Pacheco, M. P., Gómez, O. R. T., Escamilla, G. C., Aranda, S. D., & Velázquez, M. G. N. (2022). Obtaining and characterization of bioplastics...
    • Papadopoulou, K., Klonos, P. A., Kyritsis, A., Mašek, O., Wurzer, C., Tsachouridis, K., Anastasiou, A. D., & Bikiaris, D. N. (2023). Synthesis...
    • Parisi, O. I., Puoci, F., Iemma, F., De Luca, G., Curcio, M., Cirillo, G., Spizzirri, U. G., & Picci, N. (2010). Antioxidant and spectroscopic...
    • Rafiqah, S. A., Khalina, A. Harmaen, A. S., Tawakkal, I. A., Zaman, K., Asim, M., Nurrazi, M. N., & Lee, C. H. (2021). A review on properties...
    • Reano, A. F., Domenek, S., Pernes, M., Beaugrand, J., & Allais, F. (2016). Ferulic Acid-Based Bis/Trisphenols as Renewable Antioxidants...
    • Righetti, M. C., Cinelli, P., Mallegni, N., Massa, C. A., Aliotta, L., & Lazzeri, A. (2019). Thermal, mechanical, viscoelastic and morphological...
    • Shekhar, N., & Mondal, A. (2024). Synthesis, properties, environmental degradation, processing, and applications of Polylactic Acid (PLA):...
    • Sohn, Y. J., Kim, H. T., Baritugo, K. A., Jo, S. Y., Song, H. M., Park, S. Y., Park, S. K., Pyo, J., Cha, H. G., Kim, H., Na, J. G., Park,...
    • Syverud, K., & Stenius, P. (2009). Strength and barrier properties of MFC films. Cellulose, 16(1), 75–85. https://doi.org/10.1007/s10570-008-9244-2
    • Takeda, E., & Takenaka, K. (2021). Polymer Extrusion. In Seikei-Kakou (Vol. 33, Issue 7). https://doi.org/10.4325/seikeikakou.33.222
    • Thirmizir, M. Z. A., Ishak, Z. A. M., & Salim, M. S. (2020). Compatibilization and Crosslinking in Biodegradable Thermoplastic Polyester...
    • Wang, X., Zhou, J., & Li, L. (2007). Multiple melting behavior of poly(butylene succinate). European Polymer Journal, 43(8), 3163–3170....
    • Wiesinger, H., Wang, Z., & Hellweg, S. (2021). Deep Dive into Plastic Monomers , Additives , and Processing Aids. https://doi.org/10.1021/acs.est.1c00976
    • Xu, J., & Guo, B. H. (2010). Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnology Journal,...
    • Zapata, R. C., Ramírez, D. P., Pérez, J. J. C., Rosales, H. D., Díaz, B. B., & Adame, J. A. A. (2023). Mechanical and thermal evaluation...
    • Zhang, Y., Yuan, W., & Liu, Y. (2018). Synthesis and characterization of bio-based poly(butylene succinate-co-10-hydroxydecanoate). Journal...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno