Ir al contenido

Documat


Qualitative Dynamics of Discrete Nonlinear Higher-Order Fuzzy Difference Equations

  • Yacine Halim [2] ; Ibtissem Redjam [3] ; Ibraheem M. Alsulami [1]
    1. [1] Umm al-Qura University

      Umm al-Qura University

      Arabia Saudí

    2. [2] Mohamed Seddik ben Yahia University & Abdelhafid Boussouf University Center
    3. [3] Abdelhafid Boussouf University Center
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this study, we investigate the qualitative dynamics of discrete-time nonlinear higherorder fuzzy difference equations. We establish the existence, positivity, and uniqueness of solutions, ensuring a comprehensive understanding of their behavior. Additionally, we analyze the boundedness and persistence of positive fuzzy solutions, deriving sufficient conditions for stability and convergence. Our approach incorporates theoretical analysis supported by numerical simulations, validating the derived conditions and illustrating their practical significance. These findings contribute to the broader field of fuzzy mathematics by providing a structured framework for studying the long-term behavior of fuzzy difference equations.

  • Referencias bibliográficas
    • 1. Allahviranloo, T., Salahshour, S., Khezerloo, M.: Maximal- and minimal symmetric solutions of fully fuzzy linear systems. J. Comput. Appl....
    • 2. Allam, A., Halim, Y., Khelifa, A.: Convergence of solutions of a system of recurrence equations. J. Appl. Math. Comput. 69, 1659–1677 (2023)
    • 3. Atpinar, S., Yazlik, Y.: Qualitative behavior of exponential type of fuzzy difference equations system. J. Appl. Math. Comput 69(6), 4135–4162...
    • 4. Bede, B.: Mathematics of fuzzy sets and fuzzy logic. Springer, Berlin (2013)
    • 5. Buckly, J.J.: The fuzzy mathematics of finance. Fuzzy Sets Syst. 21(3), 257–273 (1987)
    • 6. Chrysafis, K.A., Papadopoulos, B.K., Papaschinopoulos, G.: On the fuzzy difference equations of finance. Fuzzy Sets Syst. 159, 3259–3270...
    • 7. Deeba, E., De Korvin, A., Koh, E.L.: A fuzzy difference equation with an application. J. Differ. Equ. Appl. 2, 365–374 (1996)
    • 8. Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. World Scientific, Singapore (1994)
    • 9. Elsayed, E.M.: On the solutions and periodic nature of some systems of difference equations. Int. J. Biomath. 7, 1450067 (2014)
    • 10. Elsayed, E.M.: Solutions of rational difference systems of order two. Math. Comput. Model. 55, 378–384 (2012)
    • 11. Ghomashi, A., Salahshour, S., Hakimzadeh, A.: Approximating solutions of fully fuzzy linear systems: a financial case study. J. Intell....
    • 12. Gümü¸s, M., Soykan, Y.: Global character of a six-dimensional nonlinear system of difference equations. Discrete Dyn. Nat. Soc. 2016,...
    • 13. Gümü¸s, M.: The global asymptotic stability of a system of difference equations. J. Differ. Equ. Appl. 24(6), 976–991 (2018)
    • 14. Gümü¸s, M.: Analysis of periodicity for a new class of non-linear difference equations by using a new method. Electron. J. Math. Anal....
    • 15. Gümü¸s, M.: Global asymptotic behavior of a discrete system of difference equations with delays. Filomat 37(1), 251–264 (2023)
    • 16. Gümü¸s, M., Yalçinkaya, ˙I, Tollu, D.T.: Dynamic analysis of high-order fuzzy difference equation. J. Appl. Math. Comput. 71, 1285–1308...
    • 17. Halim, Y., Allam, A., Bengueraichi, Z.: Dynamical behavior of a system of P-dimensional nonlinear difference equations. Math. Slovaca...
    • 18. Halim, Y., Touafek, N., Yazlik, Y.: Dynamic behavior of a second-order nonlinear rational difference equation. Turk. J. Math. 39(6), 1004–1018...
    • 19. Halim, Y., Rabago, J.F.T.: On the solutions of a second-order difference equations in terms of generalized Padovan sequences. Math. Slovaca...
    • 20. Halim, Y., Bayram, M.: On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences. Math. Methods...
    • 21. Halim, Y.: Form and periodicity of solutions of some systems of higher-order difference equations. Math. Sci. Lett. 5(1), 79–84 (2016)
    • 22. Halim, Y., Khelifa, A., Berkal, M., Bouchair, A.: On a solvable system of p difference equations of higher order. Period. Math. Hung....
    • 23. Halim, Y.: A system of difference equations with solutions associated to Fibonacci numbers. Int. J. Differ. Equ. 11(1), 65–77 (2016)
    • 24. Hatir, E., Mansour, T., Yalçinkaya, I.: On a fuzzy difference equation. Util. Math. 93, 135–151 (2014)
    • 25. Kandel, A., Byatt, W. J.: Fuzzy differential equations. Proc. Int. Conf. Cybernatics and Society, 1213- 1216 (1978)
    • 26. Kandel, A., Byatt, W.J.: Fuzzy algebra and fuzzy statistic. Proc. IEEE 66, 1619–1639 (1978)
    • 27. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Syst. 24, 301–317 (1987)
    • 28. Kaleva, O.: The Cauchy problem for fuzzy differential equations. Fuzzy Sets Syst. 35, 389–396 (1990)
    • 29. Kara, M., Yazlik, Y.: Solvability of a system of nonlinear difference equations of higher order. Turk. J. Math. 43(3), 1533–1565 (2019)
    • 30. Kara, M., Yazlik, Y., Touafek, N., Akrour, Y.: On a three-dimensional system of difference equations with variable coefficients. J. Appl....
    • 31. Kaouache, S., Feˇckan, M., Halim, Y., Khelifa, A.: Theoretical analysis of higher-order system of difference equations with generalized...
    • 32. Khelifa, A., Halim, Y.: General solutions to systems of difference equations and some of their representations. J. Appl. Math. Comput....
    • 33. Khelifa, A., Halim, Y.: Global behavior of p-dimensional difference equations system. Electron. Res. Arch. 29(5), 3121–3139 (2021)
    • 34. Khelifa, A., Halim, Y., Berkal, M.: Solutions of a system of two higher-order difference equations in terms of Lucas sequence. Univers....
    • 35. Pakdaman, M., Effati, S.: On fuzzy linear projection equation and applications. Fuzzy. Optim. Decis. Mak. 15, 219–236 (2016)
    • 36. Redjam, I., Halim, Y., Feˇckan, M.: On a higher order fuzzy difference equation with a quadratic term. J. Appl. Math. Comput. 71, 429–452...
    • 37. Touafek, N.: On a second order rational difference equation. Hacet. J. Math. Stat. 41(6), 867–874 (2012)
    • 38. Touafek, N.: On a general system of difference equations defined by homogeneous functions. Math. Slovaca 71(3), 697–720 (2021)
    • 39. Yalçinkaya, I., Çali¸skan, V., Tollu, D.T.: On a nonlinear fuzzy difference equation. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat....
    • 40. Yazlik, Y., Tollu, D.T., Taskara, N.: Behaviour of solutions for a system of two higher-order difference equations. J. Sci. Arts. 45(4),...
    • 41. Yazlik, Y., Kara, M.: On a solvable system of difference equations of higher-order with period two coefficients. Commun. Fac. Sci. Univ....
    • 42. Zhang, Q., Yang, L., D. Liao, D.: On the fuzzy differnce equation xn+1 = A + k i=0 Bi xn−i . World Acad. Sci, Eng.Technol....
    • 43. Zhang, Q., Ouyang, M., Pan, B., Lin, F.: Qualitative analysis of second-order fuzzy difference equation with quadratic term. J. Appl....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno