Ir al contenido

Documat


Iteration of Quasiconformal Maps

  • Xu Zhang [1] ; Yukai Wang [1] ; Guanrong Chen [2]
    1. [1] Shandong University

      Shandong University

      China

    2. [2] City University of Hong Kong

      City University of Hong Kong

      RAE de Hong Kong (China)

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Quasiconformal maps provide a powerful tool for complex analysis and complicated dynamics studies. In this article, the iterations of quasiconformal maps are investigated, showing that the iterative dynamics can be very complicated. One kind of quasiconformal map in the sense of Beltrami has a global attractor and a growing horseshoe, where the latter means that the number of folds of the horseshoe is increasing as a parameter is varied. Further, the generalized Hénon maps are represented as generalized quasiconformal maps in certain parameter regions. It is shown that this class of generalized quasiconformal maps is different from the maps in the sense of Beltrami or of Beltrami-David. Moreover, a natural class of invariant measures are constructed for the generalized Hénon maps. Based on the characteristics of the quasiconformal maps, some new properties of the generalized Hénon maps are revealed and analyzed, which are related to the existence of the wandering domains.

  • Referencias bibliográficas
    • 1. Astala, K., Iwaniec, T., Martin. G. J.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Math....
    • 2. Astorg, M., Buff, X., Dujardin, R., Peters, H., Raissy, J.: A two-dimensional polynomial mapping with a wandering Fatou component. Ann....
    • 3. Baker, I.N.: An entirefunction which has wandering domains. J. Aust. Math. Soc. A 22, 173–176 (1976)
    • 4. Bedford, E.: Dynamics of rational surface automorphisms. In Abate, M., Dinh, T., Bedford, E., Schleicher, D., Brunella, M., Sibony, N....
    • 5. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2. VI: Connectivity of J . Ann. Math., 148:695–735, (1998)
    • 6. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2. VII: Hyperbolicity and external rays. Ann. Sci. Ecole Norm. Sup. 4 série, 32:455–497,...
    • 7. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of C2. VIII: Quasiexpansion. Amer. J. Math. 124, 221–271 (2002)
    • 8. Bedford, E., Smillie, J.: Real polynomial diffeomorphisms with maximal entropy: I. Tangencies. Ann. Math. 160, 1–26 (2004)
    • 9. Bedford, E., Smillie, J.: Real polynomial diffeomorphisms with maximal entropy: II. Small Jacobian. Ergod. Theor. Dyn. Syst. 26, 1259–1283...
    • 10. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133, 73–169 (1991)
    • 11. Benedicks, M., Viana, M.: Solution of the basin problem for Hénon-like attractors. Invent. Math. 143, 375–434 (2001)
    • 12. Benedicks, M., Young, L.S.: Sinai-Bowen-Ruelle measure for certain Hénon maps. Invent. Math. 112, 541–576 (1993)
    • 13. Berger, P., Biebler, S.: Emergence of wandering stable components. arXiv:2001.08649v1, (2020)
    • 14. Bergweiler, W.: Iteration of quasiregular mappings. Comput. Methods Funct. Theory 10, 455–481 (2010)
    • 15. Bergweiler, W.: Fatou-Julia theory for non-uniformly quasiregular maps. Ergod. Theor. Dyn. Syst. 33, 1–23 (2013)
    • 16. Bergweiler, W., Nicks, D.A.: Foundations for an iteration theory of entire quasiregular maps. Israel J. Math. 201, 147–184 (2014)
    • 17. R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, volume 470 of Lect. Notes. Math. Springer Verlag, 1975
    • 18. B. Branner and N. Fagella. Quasiconformal Surgery in Holomorphic Dynamics. Cambridge Stud. Adv. Math. Vol. 141. Cambridge Univ. Press,...
    • 19. Colli, E., Vargas, E.: Non-trivial wandering domains and homoclinic bifurcations. Ergod. Theor. Dyn. Syst. 21, 1657–1681 (2001)
    • 20. Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures et Appl. 11, 333–376 (1932)
    • 21. Devaney, R.L., Nitecki, Z.: Shift automorphisms in the Hénon mapping. Commun. Math. Phys. 67, 137–146 (1979)
    • 22. Dullin, H.R., Meiss, J.D.: Generalized Hénon maps: the cubic diffeomorphisms of the plane. Phys. D 143, 262–289 (2000)
    • 23. Eremënko, A.É.: On the iteration of entire functions. In: Dynamical Systems and Ergodic Theory. Banach Center Publications 23, pp. 339–345....
    • 24. Eremenko, A.E., Lyubich, M.Y.: Examples of entire functions with pathological dynamics. J. Lond. Math. Soc. 36, 458–468 (1987)
    • 25. Eremenko, A.E., Lyubich, M.Y.: Dynamical properties of some classes of entire functions. Ann. de l’institut Fourier 42, 989–1020 (1992)
    • 26. Fletcher, A.N., Nicks, D.A.: Quasiregular dynamics on the n-sphere. Ergod. Theor. Dyn. Syst. 31, 23–31 (2011)
    • 27. Fletcher, A.N., Nicks, D.A.: Iteration of quasiregular tangent functions in three dimensions. Conform. Geom. Dyn. 16, 1–21 (2012)
    • 28. Fletcher, A.N., Nicks, D.A.: Normal families and quasiregular mappings. Proc. Edin. Math. Soc. 67, 79–112 (2024)
    • 29. G. B. Folland. Real Analysis. Pure and Applied Mathematics. Modern techniques and their applications. John Wiley & Sons, Inc., A Wiley-Interscience...
    • 30. Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theor. Dyn. Syst. 9, 67–99 (1989)
    • 31. Goldberg, L.R., Keen, L.: A finiteness theorem for a dynamical class of entire functions. Ergod. Theor. Dyn. Syst. 6, 183–192 (1986)
    • 32. Guckenheimer, J.: Sensitive dependence to initial conditions for one dimensional maps. Commun. Math. Phys. 70, 133–160 (1979)
    • 33. Hall, G.: A c∞ Denjoy counterexample. Ergod. Theor. Dyn. Syst. 1, 261–272 (1981)
    • 34. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)
    • 35. M. Herman. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. l’Institut des Hautes Études...
    • 36. Hu, J., Sullivan, D.: Topological conjugacy of circle diffeomorphisms. Ergod. Theor. Dyn. Syst. 17, 173–186 (1997)
    • 37. Kiriki, S., Li, M.C., Soma, T.: Coexistence of invariant sets with and without SRB measures in Hénon family. Nonlinearity 23, 2253 (2010)
    • 38. Kiriki, S., Nakano, Y., Soma, T.: Non-trivial wandering domains for heterodimensional cycles. Nonlinearity 30, 3255 (2017)
    • 39. Kiriki, S., Soma, T.: Existence of generic cubic homoclinic tangencies for Hénon maps. Ergod. Theor. Dyn. Syst. 33, 1029–1051 (2013)
    • 40. Soma, T., Kiriki, S.: Takens’ last problem and existence of non-trivial wandering domains. Adv. Math. 306, 524–588 (2017)
    • 41. Kwakkel, F., Markovic, V.: Topological entropy and diffeomorphisms of surfaces with wandering domains. Ann. Acad. Sci. Fenn. Math. 35,...
    • 42. Lehto, O.: Univalent Functions and Teichüller Spaces. Graduate Texts Math, vol. 109. Springer-Verlag, NY (1987)
    • 43. Lehto, O., Virtanen, K. I.: Quasiconformal Mappings in the Plane. Die Grundlehren der mathematischen Wissenschaften 126. Springer-Verlag,...
    • 44. Lyubich, M., Martens, M.: Renormalization in the Hénon family, II: the heteroclinic web. Invent. Math. 186, 115–189 (2011)
    • 45. Milnor, J.: Dynamics in One Complex Variable, 3rd Edition. Ann. Math. Stud. No.160. Princeton Univ. Press, (2006)
    • 46. Morosawa, S., Nishimura, Y., Taniguchi, M., Ueda, T.: Holomorphic Dynamics. Cambridge Univ. Press, United Kingdom (2000)
    • 47. Nicks, D.A., Sixsmith, D.J.: The bungee set in quasiregular dynamics. Bull. London Math. Soc. 51, 120–128 (2019)
    • 48. Norton, A.: Denjoy’s theorem with exponents. Proc. Am. Math. Soc. 127, 3111–3118 (1999)
    • 49. Norton, A., Sullivan, D.: Wandering domains and invariant conformal structures for mappings of the 2-torus. Ann. Acad. Sci. Fenn. Math....
    • 50. Ou, D.: Nonexistence of wandering domains for strongly dissipative infinitely renormalizable Hénon maps at the boundary of chaos. Invent....
    • 51. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle (i,ii,iii,iv). J. Math. Pures et Appl., 82,85,86, (1881)
    • 52. Robinson, C.: Dynamical Systems: Stability. Symbolic Dynamics and Chaos. CRC Press, Florida (1999)
    • 53. D. Sullivan. Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia problem on wandering domains. Ann. Math., 122:401–418,...
    • 54. Sun, D., Yang, L.: Quasirational dynamical systems (in Chinese). Chinese Ann. Math. Ser. A 20, 673–684 (1999)
    • 55. Sun, D., Yang, L.: Quasirational dynamic system. Chinese Science. Bull. 45, 1277–1279 (2000)
    • 56. Sun, D., Yang, L.: Iteration of quasi-rational mapping. Progr. Natur. Sci. (English Ed.) 11, 16–25 (2001)
    • 57. van Strien, S.: One-dimensional dynamics in the new millennium. Discrete Contin. Dyn. Syst 27, 557–588 (2010)
    • 58. J. C. Yoccoz. Il n’ya pas de contre-exemple de Denjoy analytique. C. R. Acad. Sci. Paris Sér. I Math., 298:141–144, 1984
    • 59. Zhang, X.: Hyperbolic invariant sets of the real generalized Hénon maps. Chaos, Solitons, Fractals 43, 31–41 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno