Ir al contenido

Documat


Microservice architecture for a remote management platform for pastured poultry farming using Amazon Web Services and wireless mesh sensor networks

  • Gonzalez, Joseph [1] ; Villarreal, Vladimir [1] ; Muñoz, Lilia [1]
    1. [1] Universidad Tecnológica de Panamá

      Universidad Tecnológica de Panamá

      Panamá

  • Localización: Ingeniería Solidaria, ISSN-e 2357-6014, Vol. 19, Nº. 1, 2023
  • Idioma: inglés
  • DOI: 10.16925/2357-6014.2023.01.02
  • Títulos paralelos:
    • Arquitectura de microservicios para una plataforma de gestión remota para la cría de aves en pastoreo utilizando Amazon Web Services y redes inalámbricas de sensores de malla
  • Enlaces
  • Resumen
    • español

      Introducción: arquitectura de microservicios para una plataforma de gestión remota para la avicultura en pastoreo utilizando Amazon Web Services y redes inalámbricas de sensores de malla, Universidad Tecnológica de Panamá, 2023.

      Problema: las tecnologías de ganadería de precisión (PLF) ayudan a la gestión de las industrias de producción animal, como el uso de redes de sensores inalámbricos (WSN) en la cría de aves de corral. Los sistemas actuales basados en WSN para la cría de aves de corral carecen de arquitecturas de software sólidas pero flexibles para garantizar la integridad y la entrega adecuada de los datos.

      Objetivo: diseñar una arquitectura de software basada en microservicios (MSA) para un sistema de gestión ambiental remota basado en Wireless Mesh Sensor Networks (WMSN) para aves en pastoreo.

      Metodología: se realizó una revisión de MSA para la cría de animales para sintetizar los factores clave considerados en el proceso de diseño del flujo de datos del sistema, la definición de microservicios y la selección de tecnología del sistema de monitoreo ambiental.

      Resultados: se desarrolló un MSA en la nube con esquema multicapa utilizando la plataforma Amazon Web Services (AWS), validando la persistencia de datos ambientales de nodos prototipo WMSN para ser desplegados en gallineros móviles.

      Conclusión: definir un flujo de datos End-to-End facilita la organización de tareas por dominio, permitiendo una comunicación eficiente de eventos entre componentes y confiabilidad de la red tanto a nivel de hardware como de software.

      Originalidad: este estudio presenta un diseño novedoso para un sistema de monitoreo ambiental remoto basado en WMSN para cooperativas móviles utilizadas en aves de pastoreo y una plataforma de administración en la nube MSA de varias capas para esta industria.

       

    • English

      Introduction: A variety of innovative solutions known as Precision Livestock Farming (PLF) technologies have been developed for the management of animal production industries, including Wireless Sensor Networks (WSN) for poultry farming.

      Problem: Current WSN-based systems for poultry farming lack the design of robust but flexible software architectures that ensure the integrity and proper delivery of data.

      Objective: Designing a microservice-based software architecture (MSA) for a multiplatform remote environmental management system based on Wireless Mesh Sensor Networks (WMSN) to be deployed in pastured poultry farming spaces.

      Methodology: A review about MSAs designed for animal farming was conducted, to synthesize key factors considered for the design process of the system data flow, microservice definition and the environmental monitoring system technology selection.

      Results: A cloud MSA with a multi layered scheme using the Amazon Web Services (AWS) platform was developed, validating the persistence of environmental data transmitted from WMSN prototype nodes to be deployed in mobile chicken coops.

      Conclusion: Defining an End-to-End data flow facilitates the organization of tasks by domains, allowing efficient event communication between components and network reliability both at the hardware and software levels.

      Originality: This study presents a novel design for a remote environmental monitoring system based on WMSN for mobile coops used in pastured poultry and a multi layered MSA cloud management platform for this specific type of food production industry.

      Limitations: Software architecture technology selection was based only on services offered, to the date of the study, in the free tier of the Amazon Web Service platform.

  • Referencias bibliográficas
    • FAO, “Animal Production,” Food and Agriculture Organization of the United Nations. p. 1, 2023. [Online]. Available: https://www.fao.org/animal-production/en
    • ECLAC, “Goal 2: End hunger, achieve food security and improved nutrition and promote sustainable agriculture,” 2030 Agenda in Latin America...
    • O. Debauche, S. Mahmoudi, P. Manneback, and F. Lebeau, “Cloud and distributed architectures for data management in agriculture 4.0 : Review...
    • J. Gonzalez, V. Villarreal, and L. Muñoz, “A Proposal for the Remote Management of Hygrothermal Comfort Conditions in Mobile Chicken Coops...
    • Y. A. Attia et al., “Poultry Production and Sustainability in Developing Countries under the COVID-19 Crisis: Lessons Learned,” Animals (Basel),...
    • J. Gonzalez, V. Villarreal, L. Munoz, and C. Pardo, “A systematic review about precision technologies for livestock production and their application...
    • D.-T. Tran, “Design of real-time cow behavior monitoring system based on wireless sensor networks and K-Mmeans clustering algorithm,” Revista...
    • M. M. Salazar Cardona, “Design of a solar energy harvesting system for supplying energy to an autonomous wireless sensor node,” Revista Ingeniería...
    • H. F. Mahdi, M. H. Alwan, B. Al-bander, and A. Z. Sameen, “A Comparision of Node Detection Algorithms Over Wireless Sensor Network,” International...
    • B. Alsinglawi, L. Zheng, M. A. Kabir, M. Z. Islam, D. Swain, and W. Swain, “Internet of Things and Microservices in Supply Chain: Cybersecurity...
    • S. Aydin and M. Nafiz Aydin, “Design and implementation of a smart beehive and its monitoring system using microservices in the context of...
    • M. Taneja, N. Jalodia, J. Byabazaire, A. Davy, and C. Olariu, “SmartHerd management: A microservices‐based fog computing–assisted IoT platform...
    • S. ben Atitallah, M. Driss, and H. ben Ghzela, “Microservices for Data Analytics in IoT Applications: Current Solutions, Open Challenges,...
    • O. Debauche et al., “Data management and internet of things: A methodological review in smart farming,” Internet of Things, vol. 14, pp. 1–23,...
    • A. Jukan, F. Carpio, X. Masip, A. J. Ferrer, N. Kemper, and B. U. Stetina, “Fog-to-Cloud Computing for Farming: Low-Cost Technologies, Data...
    • J. Mateo-Fornés, A. Pagès-Bernaus, L. M. Plà-Aragonés, J. P. Castells-Gasia, and D. Babot-Gaspa, “An Internet of Things Platform Based on...
    • I. Shabani, T. Biba, and B. Çiço, “Design of a Cattle-Health-Monitoring System Using Microservices and IoT Devices,” Computers, vol. 11, no....
    • K. Dineva and T. Atanasova, “Design of Scalable IoT Architecture Based on AWS for Smart Livestock,” Animals, vol. 11, no. 9, pp. 1–30, Sep....
    • I. Suciu, G. Boquet, P. Tuset-Peiró, and X. Vilajosana, “ADO: An open digital end-to-end tank based aquaculture platform,” HardwareX, vol....
    • C. J. L. de Santana, B. de Mello Alencar, and C. V. S. Prazeres, “Reactive microservices for the internet of things,” Proceedings of the 34th...
    • J. M. Álvarez Q., J. I. García M., and J. A. Sanabria O., “Online System Based on Microservices for Rapid Diagnostic of Pathogenic Bacteria...
    • K. Dineva, “Integration of Heterogeneous Data from Distributed Iot Devices,” Bulgarian Academy of Sciences. pp. 1–33, 2020. [Online]. Available:...
    • Z. Nurlan, T. Zhukabayeva, M. Othman, A. Adamova, and N. Zhakiyev, “Wireless Sensor Network as a Mesh: Vision and Challenges,” IEEE Access,...
    • E. de Leon and M. Nabi, “An Experimental Performance Evaluation of Bluetooth Mesh Technology for Monitoring Applications,” IEEE Wireless Communications...
    • Q. T. Tran, D. D. Tran, D. Doan, and M. S. Nguyen, “An Approach of BLE Mesh Network for Smart Home Application,” Proceedings - 2020 International...
    • T. C. Yang Lam, S. S. Ling Yew, and S. L. Keoh, “Bluetooth Mesh Networking: An Enabler of Smart Factory Connectivity and Management,” 2019...
    • K. Fjelde Pedersen, “Mesh Networking for IoT Implemented on robots using Bluetooth Low Energy Mesh and Thread,” Norwegian University of Science...
    • Featherman Equipment, “Prairie Schooner - Featherman Equipment - Pasture Raised,” Featherman Equipment. p. 1, 2023. [Online]. Available: https://www.feathermanequipment.com/shop/prairie-schooners/prairie-schooner/
    • S. Maftah, M. el Ghmary, H. el Bouabidi, M. Amnai, and A. Ouacha, “Optimal Task Processing and Energy Consumption Using Intelligent Offloading...
    • A. Meixner, “Where and When End-to-End Analytics Works,” SemiconductorEngineering. p. 1, May 2022. [Online]. Available: https://semiengineering.com/where-and-when-end-to-end-analytics-works/
    • S. Kahveci, B. Alkan, M. H. Ahmad, B. Ahmad, and R. Harrison, “An end-to-end big data analytics platform for IoT-enabled smart factories:...
    • Intel Corporation, “Introduction — oneAPI Specification 1.0-rev-1 documentation,” OpenAPI. p. 1, 2020. [Online]. Available: https://spec.oneapi.io/versions/1.0-rev-1/elements/oneDAL/source/introduction.html
    • L. Paz-Fernandez, “Multilayer validation system for the automation of data in a WSN network with IOT devices,” Revista Ingeniería Solidaria,...
    • P. di Francesco, P. Lago, and I. Malavolta, “Architecting with microservices: A systematic mapping study,” Journal of Systems and Software,...
    • G. Stafford, “Environmental Sensor Telemetry Data ,” Kaggle. p. 1, 2021. [Online]. Available: https://www.kaggle.com/datasets/garystafford/environmental-sensor-data-132k
    • Amazon Web Services, “Cloud Computing Services,” AWS. p. 1, 2022. [Online]. Available: https://aws.amazon.com/?nc1=h_ls

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno