Ir al contenido

Documat


Some innovative results for interpolative Kannan type and Reich-Rus-Ćirić type cyclic contractions

  • Shabir, Naila [1] ; Raza, Ali [1] ; Khan, Safeer Hussain [2]
    1. [1] University of Lahore

      University of Lahore

      Pakistán

    2. [2] North Carolina Agricultural and Technical State University

      North Carolina Agricultural and Technical State University

      Township of Morehead, Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 1, 2025, págs. 193-202
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.21350
  • Enlaces
  • Resumen
    • In this manuscript, we present innovative findings on the existence and uniqueness of fixed points for cyclic mappings. Our discussion covers results for interpolative Kannan-type cyclic contractions in two cases: when the sum of the interpolative exponents is less than one and when it is greater than one. Additionally, we provide results for interpolative Reich-Rus-Ćirić cyclic contractions specifically for cases where the sum of the interpolative exponents is greater than one. Furthermore, we verify our results with suitable examples. Our results are new and complement some results in the literature.

  • Referencias bibliográficas
    • M. Asadi, E. Karapınar, and A. Kumar, α-ψ-Geraghty contractions on generalized metric spaces, Journal of Inequalities and Applications 1 (2014),...
    • M. Edraoui, and S. Semami, Fixed points results for various types of interpolative cyclic contraction, Applied General Topology 24, no. 2...
    • A. A. Eldered, and P. Veeramani, Convergence and existence for best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
    • S. Ghasemzadehdibagi, M. Asadi, and S. Haghayeghi, Nonexpansive mappings and continuous s-point spaces, Fixed Point Theory 21, no. 2 (2020),...
    • E. Karapınar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135
    • E. Karapınar, Interpolative Kannan-Meir-Keeler type contraction, Adv. Theory Nonlinear Anal. 5, no. 4 (2021), 611-614. https://doi.org/10.31197/atnaa.989389
    • E. Karapınar, and I. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci. 3, no. 3 (2011), 342-353.
    • E. Karapınar, and I. M. Erhan, Cyclic contractions and fixed point theorems, Filomat 26, no. 4 (2012), 777-782. https://doi.org/10.2298/FIL1204777K
    • S. Karpagam, and S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Analysis: Theory, Methods...
    • W. A. Kirk, P. S. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4,...
    • G. Petrusel, Cyclic representations and periodic points, Studia Univ. Babes-Bolyai Math. 50 (2005), 107-112.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno