Ir al contenido

Documat


Hunting Cooperation: Its Impact in a modified May–Holling–Tanner model

  • Francisco Javier Reyes-Bahamón [1] ; Camilo Andrés Rodríguez-Cifuentes [1] ; Eduardo González-Olivares [2] ; Simeón Casanova-Trujillo [3]
    1. [1] Universidad Surcolombiana

      Universidad Surcolombiana

      Colombia

    2. [2] Pontificia Universidad Católica de Valparaíso

      Pontificia Universidad Católica de Valparaíso

      Valparaíso, Chile

    3. [3] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, a modified May–Holling–Tanner predator-prey model is analyzed, considering an alternative food source for predators and hunting cooperation between them. To describe the dynamics of the model, we demonstrate the existence of a positively invariant region, the boundedness, and permanence of the trajectories, and prove that the origin is a hyperbolic repeller. We provide necessary and sufficient conditions for the existence and explicit form of up to two positive equilibria. One equilibrium is always a hyperbolic saddle, while the other can be an attractor, repeller, or weak focus. Additionally, we found two key structures: (i) a separatrix curve on the phase plane dividing the behavior of trajectories into qualitatively distinct regions, and (ii) a homoclinic curve generated by the stable and unstable manifolds of a saddle point in the interior of the first quadrant. These structures highlight the system’s sensitivity to initial conditions, particularly near the separatrix. Bifurcations can occur in the system, including transcritical and Hopf bifurcations, which further influence the model’s dynamics. Finally, numerical simulations are presented to validate the analytical results and illustrate that hunting cooperation is unfavorable for the coexistence of two species when the strength of hunting cooperation increases.

  • Referencias bibliográficas
    • 1. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)
    • 2. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for tropic interaction. Ecology 56(4), 881– 892 (1975). https://doi.org/10.2307/1936298
    • 3. Wangersky, P.J.: Lotka-Volterra population models. Annu. Rev. Ecol. Evolut. Syst. 9, 189–218 (1978). https://doi.org/10.1146/annurev.es.09.110178.001201
    • 4. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558– 560 (1926). https://doi.org/10.1038/118558a0
    • 5. Bacaër, N.: Histoires de Mathématiques et de Populations. Cassini, Paris (2008)
    • 6. Scudo, F.M., Ziegler, J.R.: The Golden Age of Theoretical Ecology: 1923-1940 vol. 22. Springer, Berlin (2013)
    • 7. Tripathi, J.P., Bugalia, S., Jana, D., Gupta, N., Tiwari, V., Li, J., Sun, G.Q.: Modeling the cost of anti-predator strategy in a predator-prey...
    • 8. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35(3–4), 213–245 (1948). https://doi.org/10.2307/2332342
    • 9. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika...
    • 10. May, R.M.: Stability and complexity in model ecosystems, In: Monographs in Population Biology. Princeton university press, Nueva Jersey...
    • 11. Turchin, P.: Complex population dynamics: a theoretical/ empirical synthesis. Monographs in Population Biology 35. Princeton University...
    • 12. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a prey-predator model with Beddington– Deangelis type function response incorporating...
    • 13. Arrowsmith, D., Place, C.M.: Dynamical Systems: Differential Equations, Maps, and Chaotic Behaviour. CRC Press, London (1992)
    • 14. Sáez, E., González-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59(5), 1867–1878 (1999). https://doi.org/10.1137/S0036139997318457
    • 15. Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L., Turchin, P.: Small-rodent dynamics and predation. Ecology 82, 1505–1520 (2001)....
    • 16. González-Olivares, E., Gallego-Berrío, L.M., González-Yañez, B., Rojas-Palma, A.: Consequences of weak Allee effect on prey in the May–Holling–Tanner...
    • 17. González-Olivares, E., Arancibia-Ibarra, C., Rojas-Palma, A., González-Yañez, B.: Bifurcations and multistability on the May–Holling–Tanner...
    • 18. Arancibia-Ibarra, C.: The basins of attraction in a modified May–Holling–Tanner predator-prey model with Allee affect. Nonlinear Analysis...
    • 19. Khanghahi, M.J., Ghaziani, R.K.: Bifurcation analysis of a modified May–Holling–Tanner Predator– Prey Model with Allee effect. Bullet....
    • 20. Das, A., Mandal, S., Roy, S.K.: Bifurcation analysis within a modified May-Holling-Tanner PreyPredator system via Allee effect and harvesting...
    • 21. Tripathi, J., Tyagi, S., Abbas, S.: Dynamical analysis of a predator-prey interaction model with time delay and prey refuge. Nonautonomous...
    • 22. Tripathi, J.P., Meghwani, S.S., Thakur, S.M.: Abbas: a modified Leslie–Gower predator-prey interaction model and parameter identifiability....
    • 23. González-Olivares, E., Mosquera-Aguilar, A., Tintinago-Ruiz, P., Rojas-Palma, A.: Bifurcations in a Leslie–Gower type predator-prey model...
    • 24. González-Olivares, E., Rivera-Estay, V., Rojas-Palma, A., Vilches-Ponce, K.: A Leslie–Gower type predator-prey model considering herd...
    • 25. Aziz-Alaoui, M.A., Okiye, M.D.: Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-type...
    • 26. Puchuri, L., González-Olivares, E., Rojas-Palma, A.: Multistability in a Leslie–Gower-type predation model with a rational nonmonotonic...
    • 27. Arancibia-Ibarra, C., Flores, J.: Dynamics of a Leslie–Gower predator-prey model with Holling type II functional response, Allee effect...
    • 28. Tiwari, V., Tripathi, J.P., Jana, D., Tiwari, S.K., Upadhyay, R.K.: Exploring complex dynamics of spatial predator-prey system: role of...
    • 29. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul....
    • 30. Berec, L.: Impacts of foraging facilitation among predators on predator-prey dynamics. Bullet. Math. Biol. 72, 94–121 (2010). https://doi.org/10.1007/s11538-009-9439-1
    • 31. Alves, M.T., Hilker, F.M.: Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22 (2017). https://doi.org/10.1016/j.jtbi.2017.02.002
    • 32. González-Olivares, E., Valenzuela-Figueroa, S., Rojas-Palma, A.: A simple Gause-type predator-prey model considering social predation....
    • 33. Ye, P., Wu, D.: Impacts of strong Allee effect and hunting cooperation for a Leslie–Gower predator-prey system. Chin. J. Phys. 68, 49–64...
    • 34. González-Olivares, E., Rojas-Palma, A.: Collaboration between predators and weak Allee effect in prey. Consequences on the dynamics of...
    • 35. Mondal, B., Sarkar, S., Ghosh, U.: Complex dynamics of a generalist predator-prey model with hunting cooperation in predator. Eur. Phys....
    • 36. Umrao, A.K., Srivastava, P.K.: Bifurcation analysis of a predator-prey model with Allee effect and fear effect in prey and hunting cooperation...
    • 37. Liu, Y., Zhang, Z., Li, Z.: The impact of Allee effect on a Leslie-Gower predator-prey model with hunting cooperation. Qualitative Theor....
    • 38. Wang, L., Qiu, Z., Feng, T., Kang, Y.: An eco-epidemiological model with social predation subject to a component Allee effect. Appl. Math....
    • 39. Macdonald, D.W.: The ecology of carnivore social behaviour. Nature 301, 379–384 (1983). https:// doi.org/10.1038/301379a0
    • 40. Heinsohn, R., Packer, C.: Complex cooperative strategies in group-territorial African lions. Science 269, 1260–1262 (1995). https://doi.org/10.1126/science.7652573
    • 41. Creel, S., Creel, N.M.: Communal hunting and pack size in African wild dogs. Lycaon pictus. Animal Behaviour 50(5), 1325–1339 (1995)....
    • 42. Bshary, R., Hohner, A., Ait-el-Djoudi, K., Fricke, H.: Interspecific communicative and coordinated hunting between groupers and giant...
    • 43. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)
    • 44. Freedman, H.I.: Deterministic Mathematical Model in Population Ecology. Marcel Dekker, New York (1980)
    • 45. Chicone, C.: Ordinary Differential Equations with Applications. Texts in Applied Mathematics. Springer, New York (2008)
    • 46. Birkhoff, G., Rota, G.S.: Ordinary Differential Equations, 4th edn. Wiley, New York (1989)
    • 47. Kirlinger, G.: Permanence in Lotka-Volterra equations: linked prey-predator systems. Math. Biosci. 82(2), 165–191 (1986). https://doi.org/10.1016/0025-5564(86)90136-7
    • 48. Freedman, H.I., Moson, P.: Persistence definitions and their connections. Proc. Am. Math. Soc. 109(4), 1025–1033 (1990). https://doi.org/10.2307/2048133
    • 49. Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96(3), 425–430 (1986). https://doi.org/10.2307/2046588
    • 50. Feng, P., Kang, Y.: Dynamics of a modified Leslie–Gower model with double Allee effects. Nonlinear Dyn. 80, 1051–1062 (2015). https://doi.org/10.1007/s11071-015-1927-2
    • 51. Dummit, D.S., Foote, R.M.: Abstract Algebra. Prentice Hall, Englewood Cliffs (1991)
    • 52. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2013)
    • 53. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)
    • 54. Monzón, P.: Almost global attraction in planar systems 54(8), 753–758 (2005). https://doi.org/10. 1016/j.sysconle.2004.11.014
    • 55. Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., Al-Hdaibat, B., De Witte, V., Dhooge, A.e.a.: MATCONT: Continuation Toolbox for ODEs in...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno