Ir al contenido

Documat


New Recurrent Solutions to Differential Equations with Piecewise Constant Arguments

  • Dong-Sheng Lin [1] ; Yong-Kui Chang [1]
    1. [1] Xidian University

      Xidian University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we show how to explore some properties of vector-valued pseudo Sasymptotically (ω, c)-periodic functions and sequences to examine the existence and uniqueness of pseudo S-asymptotically (ω, c)-periodic solutions to differential equations with piecewise constant arguments in Banach spaces. Pseudo S-asymptotically (ω, c)-periodic solutions considered in this paper can be unbounded and also cover bounded solutions such as pseudo S-asymptotically ω-periodic solutions, pseudo Sasymptotically ω-antiperiodic solutions and pseudo S-asymptotically Bloch periodic solutions as special cases.

  • Referencias bibliográficas
    • 1. Alvarez, E., Gómez, A., Pinto, M.: (ω, c)-Periodic function and mild solutions to abstract fractional integro-differential equations, Electron....
    • 2. Alvarez, E., Castillo, S., Pinto, M.: (ω, c)-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic...
    • 3. Alvarez, E., Díaz,S., Lizama,C.:On the existence and uniqueness of(N, λ)-periodic solutions to a class of Volterra difference equations,...
    • 4. Alvarez, E., Castillo, S., Pinto, M.: (ω, c)-Asymptotically periodic functions, firstorder Cauchy problem and Lasota Wazewska model with...
    • 5. Alvarez, E., Díaz, S., Lizama, C.: Existence of (N, λ)-periodic solutions for abstract fractional difference equations. Mediterr. J. Math....
    • 6. Alvarez, E., Díaz, S.: Existence of (N, λ)-periodic solutions to abstract difference equations of convolution type. J. Math. Anal. Appl....
    • 7. Bensalah, M., Miraoui, M., Zorgui, M.: Pseudo asymptotically Bloch periodic functions: applications for some models with piecewise constant...
    • 8. Chang, Y.K., N’Guérékata, G.M., Ponce, R.: Bloch-Type Periodic Functions: Theory and Applications to Evolution Equations. World Scientific,...
    • 9. Chang, Y.K., Zhao, J.: Pseudo S-asymptotically (ω, c)-periodic solutions to some evolution equations in Banach spaces. Banach J. Math....
    • 10. Chávez, A., Huatangari, L.Q.: Vector valued piecewise continuous almost automorphic functions and some consequences. J. Math. Anal. Appl...
    • 11. Dimbour, W., Manou-Abi, S.M.: Asymptotically ω-periodic functions in the Stepanov sense and its application for an advanced differential...
    • 12. Dimbour, W.: Pseudo S-asymptotically ω-periodic solution for a differential equation with piecewise constant argument in a Banach space....
    • 13. Feˇckan, M., Khalladi, M.T., Kosti´c, M., Rahmani, A.: Multi-dimensional ρ-almost periodic type functions and applications. Appl. Anal....
    • 14. Jian, W.G., Ding, H.S.: Tauberian theorems on R+ and applications. Proc. Amer. Math. Soc. 152, 4745–4757 (2024)
    • 15. Jian, W.G., Long, W.: Tauberian theorem for asymptotically periodic functions and its applications to abstract Cauchy problems. Acta Math....
    • 16. Khalladi, M.T., Kosti´c, M., Rahmani, A., Velinov, D.: (ω, c)-Almost periodic distributions. Kragujevac J. Math. 47, 7–19 (2023)
    • 17. Kosti´c, M.: Multi-dimensional (ω, c)-almost periodic type functions and applications, Nonauton. Dyn. Syst. 8, 136–151 (2021)
    • 18. Kosti´c, M.: Multi-dimensional c-almost periodic type functions and applications. Electron. J. Diff. Equ. 2022, 45 (2022)
    • 19. Kosti´c, M.: Weyl ρ-almost periodic functions in general metric. Math. Slovaca 73, 465–484 (2023)
    • 20. Kosti´c, M.: Metrical Almost Periodicity and Applications to Integro-Differential Equations. W. de Gruyter, Berlin (2023)
    • 21. Larrouy, J., N’Guérékata, G.M.: (ω, c)-Periodic and asymptotically (ω, c)-periodic mild solutions to fractional Cauchy problems. Appl....
    • 22. Lin, D.S., Chang, Y.K.: Pseudo S-asymptotically (ω, c)-periodic sequential solutions to some semilinear difference equation in Banach...
    • 23. Lin, D.S., Chang, Y.K.: Pseudo (ω, c)-periodic solutions to Volterra difference equations in Banach spaces. Comput. Appl. Math. 44, 33...
    • 24. Miraoui, M., Zorgui, M.: Measure pseudo Bloch periodic solutions for some difference and differential equations with piecewise constant...
    • 25. Salah, M.B., Khemili, Y., Miraoui, M.: Pseudo asymptotically Bloch periodic solutions with measures for some differential equations. Rocky...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno