Ir al contenido

Documat


General Solutions of a Class of nth-Order Nonlocal Differential Equations

  • Qunyu Yuan [1] ; Xiaoyu Cheng [1] ; Qing Huang [1]
    1. [1] Northwest University

      Northwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, general solutions of a class of nth-order nonlocal inhomogeneous differential equations are constructed by function decomposition. We transform the nonlocal model into local models under the even and odd constraints, which are solved based on the classical ODE techniques. General solutions are classified in nine cases for even n and five cases with odd n, with respect to the parameters in the equation under study

  • Referencias bibliográficas
    • 1. Tian, X.C., Du, Q.: Trace theorems for some nonlocal function spaces with heterogeneous localization. SIAM J. Math. Anal. 49, 1621–1644...
    • 2. D’Elia, M., Li, X.J., Seleson, P., Tian, X.C., Yu, Y.: A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal...
    • 3. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010). https://doi.org/10.1016/S0065-2156(10)44002-8
    • 4. Betancourt, F., Bürger, R., Karlsen, K.H., Tory, E.M.: On nonlocal conservation laws modelling sedimentation. Nonlinearity 24, 855–885...
    • 5. Colombo, R.M., Marcellini, F., Rossi, E.: Biological and industrial models motivating nonlocal conservation laws: a review of analytic...
    • 6. Huang, K., Du, Q.: Stability of a nonlocal traffic flow model for connected vehicles. SIAM J. Appl. Math. 82, 221–243 (2022). https://doi.org/10.1137/20M1355732
    • 7. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013). https://doi.org/10.1103/PhysRevLett.110.064105
    • 8. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity...
    • 9. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2016). https://doi.org/10.1111/sapm.12153
    • 10. Zhao, Y., Fan, E.G.: Existence of global solutions to the nonlocal Schrödinger equation on the line. Stud. Appl. Math. 152, 111–146 (2024)....
    • 11. Deng, X., Lou, S.Y., Zhang, D.J.: Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrödinger equations. Appl. Math....
    • 12. Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform....
    • 13. Ma, W.X.: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 177, 104522 (2022)....
    • 14. Xu, T.Y., Fan, E.G.: Large-time asymptotics to the focusing nonlocal modified Kortweg-de Vries equation with step-like boundary conditions....
    • 15. Ablowitz, M.J., Feng, B.F., Luo, X.D., Musslimani, Z.H.: Reverse space-time nonlocal sineGordon/sinh-Gordon equations with nonzero boundary...
    • 16. Kritskov, L.V., Sarsenbi, A.M.: Spectral properties of a nonlocal problem for a second-order differential equation with an involution....
    • 17. Kritskov, L.V., Sarsenbi, A.M.: Equiconvergence property for spectral expansions related to perturbations of the operator −u(−x) with...
    • 18. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977). https://doi.org/10.1126/science.267326
    • 19. Sturis, J., Polonsky, K.S., Mosekilde, E., Van Cauter, E.: Computer model for mechanisms underlying ultradian oscillations of insulin...
    • 20. Makroglou, A., Li, J.X., Kuang, Y.: Mathematical models and software tools for the glucoseinsulin regulatory system and diabetes: an overview....
    • 21. Engelborghs, K., Lemaire, V., Bélair, J., Roose, D.: Numerical bifurcation analysis of delay differential equations arising from physiological...
    • 22. Kato, T., McLeod, J.B.: The functional-differential equation y (x) = ay(λx)+by(x). Bull. Am. Math. Soc. 77, 891–937 (1971). https://doi.org/10.1090/s0002-9904-1971-12805-7
    • 23. Wiener, J.: A second-order delay differential equation with multiple periodic solutions. J. Math. Anal. Appl. 229, 659–676 (1999). https://doi.org/10.1006/jmaa.1998.6196
    • 24. Wiener, J., Lakshmikantham, V.: Excitability of a second-order delay differential equation. Nonlinear Anal. 38, 1–11 (1999). https://doi.org/10.1016/S0362-546X(98)00245-4
    • 25. Ma, W.X.: General solution to a nonlocal linear differential equation of first-order. Qual. Theor. Dyn. Syst. 23, 177 (2024). https://doi.org/10.1007/s12346-024-01036-6
    • 26. Ma, W.X.: Solving a non-local linear differential equation model of the Newtonian-type. Pramana 98, 68 (2024). https://doi.org/10.1007/s12043-024-02765-8

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno