Ir al contenido

Documat


Oscillation criteria for general third-order delay dynamic equations

  • S. R. Grace [1] ; I. Jadlovská [2] ; G. N. Chhatria [3]
    1. [1] Cairo University

      Cairo University

      Egipto

    2. [2] Slovak Academy of Sciences

      Slovak Academy of Sciences

      Eslovaquia

    3. [3] Vignan’s Foundation for Science, Technology and Research (Deemed to be University)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The goal of this work is to establish new criteria for oscillation of all solutions to a general third-order functional dynamic equation on time scales of the form r2(ν) r1(ν) y(ν)α1 α2 + q(ν)yβ(τ (ν)) = 0.

      The used approach mainly employs comparison principles with first-order dynamic equations and the Riccati-type substitution technique. The results are illustrated by three examples.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)
    • 2. Agarwal, R.P., Bohner, M., O’Regan, D., Peterson, A.: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141, 1–26 (2002)
    • 3. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Hille and Nehari type criteria for third order delay dynamic equations. J. Difference Equ....
    • 4. Agarwal, R.P., Hassan, T.S., Mohammed, W.: Oscillation criteria for third-order functional half-linear dynamic equations. Adv. Differ....
    • 5. Alexander, R.D., Moore, T.E.: The evolutionary relationships of 17-year and 13-year cicadas, and three new species (Homoptera, Cicadidae,...
    • 6. Alzabut, J., Grace, S.R., Santra, S.S., Chhatria, G.N.: Asymptotic and oscillatory behaviour of third order non-linear differential equations...
    • 7. Baculíková, B., Džurina, J., Jadlovská, I.: On asymptotic properties of solutions to third-order delay differential equations. Electron....
    • 8. Berezansky, L., Domoshnitsky, A., Koplatadze, R.: Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher...
    • 9. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
    • 10. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
    • 11. Chatzarakis, G.E., Grace, S.R., Jadlovská, I.: Oscillation criteria for third-order delay differential equations. J. Inequal. Appl. 11,...
    • 12. Deng, X.H., Huang, X., Wang, Q.R.: Oscillation and asymptotic behavior of third-order nonlinear delay differential equations with positive...
    • 13. Elabbasy, E.M., Hassan, T.S., Elmatary, B.M.: Oscillation criteria for third order delay nonlinear differential equations. Electron. J....
    • 14. Erbe, L.H., Peterson, A., Saker, S.H.: Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales. J....
    • 15. Erbe, L.H., Peterson, A., Saker, S.H.: Oscillation and asymptotic behavior of a third-order nonlinear dynamic equation. Canad. Appl. Math....
    • 16. Erbe, L.H., Peterson, A., Saker, S.H.: Hille and Nehari type criteria for third-order dynamic equations. J. Math. Anal. Appl. 329, 112–131...
    • 17. Gao, L., Zhang, Q., Liu, S.: Oscillatory behavior of third-order nonlinear delay dynamic equations on time scales. J. Comput. Appl. Math....
    • 18. Georgiev, S.G.: Functional Dynamic Equations on Time Scales. Springer Nature, Switzerland, AG (2019)
    • 19. Grace, S.R., Chhatria, G.N.: On oscillatory behaviour of third-order half-linear dynamics equations on time scales. Opuscula Math. 42,...
    • 20. Grace, S.R., Chhatria, G.N.: Oscillation of higher order nonlinear dynamic equations with a nonlinear neutral term. Math. Meth. Appl....
    • 21. Grace, S. R., Chhatria, G. N., Abbas, S.: Second-order oscillation of non-canonical functional dynamical equations on time scales. Math....
    • 22. Graef, J.R., Jadlovská, I., Tunç, E.: Sharp asymptotic results for third-order linear delay differential equations. J. Appl. Anal. Comput....
    • 23. Hassan, T.S.: Oscillation of third-order nonlinear delay dynamic equations on time scales. Math. Comput. Model. 49, 1573–1586 (2009)
    • 24. Hassan, T.S., Agarwal, R.P., Mohammed, W.W.: Oscillation criteria for third-order functional halflinear dynamic equations. Adv. Differ....
    • 25. Hayat, T., Wang, Y., Siddiqui, A.M., Hutter, K., Asghar, S.: Peristaltic transport of a third-order fluid in a circular cylindrical tube....
    • 26. Han, Z., Li, T., Sun, S., Cao, F.: Oscillation criteria for third order nonlinear delay dynamic equations on time scales. Ann. Polon....
    • 27. Han, Z., Li, T., Sun, S.: Oscillation behavior of solutions of third-order nonlinear delay dynamic equations on time scales. Commun. Korean...
    • 28. Huang, X., Deng, X., Wang, Q.: The asymptotic behavior and oscillation for a class of third order nonlinear delay dynamic equations. Acta....
    • 29. Hilger, S.: Analysis on measure chains - a unified approach to continuous and discrete calculus. Result Math. 18, 18–56 (1990)
    • 30. Li, T., Han, Z., Sun, S., Zhao, Y.: Oscillation results for third-order nonlinear delay dynamic equations on time scales. Bull. Malays....
    • 31. Li, T., Han, Z., Sun, Y., Zhao, Y.: Asymptotic behaviour of solutions for third-order half-linear delay dynamic equations on time scales....
    • 32. Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput....
    • 33. Saker, S. H.: Oscillation Theory of Delay Differential and Difference Equations: Second and Third Orders, LAP Lambert Academic Publishing,...
    • 34. Saker, S.H.: Oscillation of third-order functional dynamic equations on time scales. Sci. China Math. 54, 2597–2614 (2011)
    • 35. Sabir, Z., Said, S.B.: Heuristic computing for the novel singular third order perturbed delay differential model arising in thermal explosion...
    • 36. Schlichting, H.: Boundary Layer Theory. McGraw-Hill, New York (1979)
    • 37. Tang, X.H., Liu, Y.J.: Oscillation for nonlinear delay difference equations. Tamkang J. Math. 32, 275–280 (2001)
    • 38. Wang, Y., Xu, Z.: Asymptotic properties of solutions of certain third-order dynamic equations. J. Comput. Appl. Math. 236, 2354–2366 (2012)
    • 39. Yu, Z.H., Wang, Q.R.: Asymptotic behavior of solutions of third-order nonlinear dynamic equations on time scales. J. Comput. Appl. Math....
    • 40. Zhang, S.-Y., Wang, Q.-R., Kong, Q.: Asymptotics and oscillation of nth-order nonlinear dynamic equations on time scales. Appl. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno