Ir al contenido

Documat


On Behavior Analysis of Solutions for the Modified Complex Short Pulse Equation in the Space-Time Soliton Regions

  • Jia Wang [1] ; Xianguo Geng [2] ; Kedong Wang [2] ; Ruomeng Li [2]
    1. [1] Henan University of Engineering

      Henan University of Engineering

      China

    2. [2] Zhengzhou University

      Zhengzhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The Riemann–Hilbert approach and ∂ steepest descent method are developed to study the soliton resolution conjecture for the modified complex short pulse equation with initial data in weighted Sobolev space. Based on the resulting Riemann–Hilbert problem, the long-time asymptotic expansion of the solution for the modified complex short pulse equation is derived in a fixed space-time cone. It is shown that the soliton resolution conjecture of the modified complex short pulse equation is composed of three parts: the leading term is an N(I)-soliton whose parameters are modulated by a set of localized soliton-soliton interactions as a soliton passes through the cone; the second t−1/2 order term arises from soliton-radiation interactions on the continuous spectrum; the third term is a residual error from a ∂-problem.

  • Referencias bibliográficas
    • 1. Schäfer, T., Wayne, C.E.: Propagation of ultra-short optical pulses in cubic nonlinear media. Phys. D 196(1–2), 90–105 (2004)
    • 2. Chung, Y., Jones, C., Schäfer, T., Wayne, C.E.: Ultra-short pulses in linear and nonlinear media. Nonlinearity 18(3), 1351–1374 (2005)
    • 3. Rabelo, M.L.: On equations which describe pseudospherical surfaces. Stud. Appl. Math. 81(3), 221– 248 (1989)
    • 4. Brunelli, J.C.: The short pulse hierarchy. J. Math. Phys. 46(12), 123507 (2005)
    • 5. Brunelli, J.C.: The bi-Hamiltonian structure of the short pulse equation. Phys. Lett. A 353(6), 475–478 (2006)
    • 6. Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74(1), 239–241 (2005)
    • 7. Matsuno, Y.: Multiloop soliton and multibreather solutions of the short pulse model equation. J. Phys. Soc. Jpn. 76(8), 084003 (2007)
    • 8. Sakovich, A., Sakovich, S.: Solitary wave solutions of the short pulse equation. J. Phys. A 39(22), L361–L367 (2006)
    • 9. Shen, S.F., Feng, B.F., Ohta, Y.: A modified complex short pulse equation of defocusing type. J. Nonlinear Math. Phys. 24(2), 195–209 (2017)
    • 10. Matsuno, Y.: Integrable multi-component generalization of a modified short pulse equation. J. Math. Phys. 57(11), 111507 (2016)
    • 11. Cong, L., Liu, Q.P.: Multiple higher-order pole solutions of modified complex short pulse equation. Appl. Math. Lett. 141, 108518 (2023)
    • 12. Lv, C., Liu, Q.P.: Solving the modified complex short pulse equation of focusing type: a Riemann– Hilbert approach. Anal. Math. Phys....
    • 13. Barkov, R., Shepelsky, D.: A Riemann-Hilbert approach to solution of the modified focusing complex short pulse equation. Front. Appl....
    • 14. Xue, M., Liu, Q.P., Mao, H.: Bäcklund transformations for the modified short pulse equation and complex modified short pulse equation....
    • 15. Chen, M.M., Geng, X.G., Wang, K.D.: Long-time asymptotics for the modified complex short pulse equation. Discrete Contin. Dyn. Syst. 42(9),...
    • 16. Charlier, C., Lenells, J., Wang, D.S.: The “good” Boussinesq equation: long-time asymptotics. Anal. PDE 16, 1351–1388 (2023)
    • 17. Wang, D.S., Zhu, C., Zhu, X.D.: Miura transformations and large-time behaviors of the Hirota–Satsuma equation. J. Differ. Equ. 416, 642–699...
    • 18. Lundmark, H., Szmigielski, J.: An inverse spectral problem related to the Geng–Xue two-component peakon equation. Mem. Am. Math. Soc....
    • 19. Lundmark, H., Szmigielski, J.: Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation. J. Integrable Syst. 2(1),...
    • 20. Shuaib, B., Lundmark, H.: Non-interlacing peakon solutions of the Geng–Xue equation. J. Integrable Syst. 4(1), xyz007 (2019)
    • 21. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math. 263, 123–153...
    • 22. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc....
    • 23. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with (m + n) components. J. Nonlinear Sci. 30(3), 991–1013...
    • 24. Geng, X.G., Zeng, X.: Algebro-geometric quasi-periodic solutions to the Satsuma–Hirota hierarchy. Phys. D 448, 133738 (2023)
    • 25. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144(2), 164– 184 (2020)
    • 26. Geng, X.G., Xue, B.: A three-component generalization of Camassa–Holm equation with N-peakon solutions. Adv. Math. 226(1), 827–839 (2011)
    • 27. Niu, Z.J., Li, B.: ∂-dressing method for a generalized (2+1)-dimensional nonlinear wave equation. J. Nonlinear Math. Phys. 30, 1123–1133...
    • 28. Sun, S.F., Li, B.: The Dbar-dressing method for the (2+1)-dimensional Date-Jimbo–Kashiwara–Miwa equation. Commun. Theor. Phys. 76(1),...
    • 29. Yang, S.X., Li, B.: Dbar-dressing method for three-component coupled nonlinear Schrödinger equations. J. Appl. Anal. Comput. 14(5), 2523–2533...
    • 30. Si, Z.Z., Wang, Y.Y., Dai, C.Q.: Switching, explosion, and chaos of multi-wavelength soliton states in ultrafast fiber lasers. Sci. China-Phys....
    • 31. Si, Z.Z., Wang, D.L., Ju, Z.T., Wang, X.P., Liu, W., Malomed, B.A., Wang, Y.Y., Dai, C.Q.: Deep learning for dynamic modeling and coded...
    • 32. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math....
    • 33. Deift, P., Venakides, S., Zhou, X.: The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun....
    • 34. Krüger, H., Teschl, G.: Long-time asymptotics for the Toda lattice in the soliton region. Math. Z. 262(3), 585–602 (2009)
    • 35. Vartanian, A.H.: Higher order asymptotics of the modified non-linear Schrödinger equation. Commun. Partial Differ. Equ. 25(5–6), 1043–1098...
    • 36. Deift, P., Zhou, X.: Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Commun. Pure...
    • 37. Boutet de Monvel, A., Kotlyarov, V.P., Shepelsky, D.: Focusing NLS equation: long-time dynamics of step-like initial data. Int. Math....
    • 38. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J....
    • 39. Geng, X.G., Chen, M.M., Wang, K.D.: Long-time asymptotics of the coupled modified Korteweg-de Vries equation. J. Geom. Phys. 142, 151–167...
    • 40. Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa– Holm equation. SIAM J. Math. Anal....
    • 41. Liu, H., Geng, X.G., Xue, B.: The Deift–Zhou steepest descent method to long-time asymptotics for the Sasa–Satsuma equation. J. Differ....
    • 42. Boutet de Monvel, A., Shepelsky, D.: A Riemann–Hilbert approach for the Degasperis–Procesi equation. Nonlinearity 26(7), 2081–2107 (2013)
    • 43. Boutet de Monvel, A., Shepelsky, D.: The Ostrovsky–Vakhnenko equation by a Riemann–Hilbert approach. J. Phys. A: Math. Theor. 48(3), 035204...
    • 44. Boutet de Monvel, A., Shepelsky, D.: The Ostrovsky–Vakhnenko equation: a Riemann–Hilbert approach. C. R. Math. Acad. Sci. Paris 352(3),...
    • 45. Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: A Riemann–Hilbert approach for the Novikov equation. Symmetry Integr. Geom. Methods...
    • 46. Boutet de Monvel, A., Lenells, J., Shepelsky, D.: Long-time asymptotics for the Degasperis–Procesi equation on the half-line. Ann. Inst....
    • 47. Boutet de Monvel, A., Its, A., Kotlyarov, V.: Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition...
    • 48. Chen, M.M., Geng, X.G., Wang, K.D.: Spectral analysis and long-time asymptotics for the potential Wadati–Konno–Ichikawa equation. J. Math....
    • 49. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross-Pitaevskii equation. Commun. Math. Phys. 382(1), 585–611...
    • 50. Liu, W.H., Geng, X.G., Wang, K.D., Chen, M.M.: Spectral analysis and long-time asymptotics for the Harry Dym-type equation with the Schwartz...
    • 51. McLaughlin, K., Miller, P.D.: The ∂ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with...
    • 52. McLaughlin, K., Miller, P.D.: The ∂ steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math....
    • 53. Borghese, M., Jenkins, R., McLaughlin, K.: Long time asymptotic behavior of the focusing nonlinear Schrödinger equation. Ann. Inst. H....
    • 54. Giavedoni, P.: Long-time asymptotic analysis of the Korteweg-de Vries equation via the dbar steepest descent method: the soliton region....
    • 55. Jenkins, R., Liu, J.Q., Perry, P., Sulem, C.: Soliton resolution for the derivative nonlinear Schrödinger equation. Commun. Math. Phys....
    • 56. Cheng, Q.Y., Fan, E.G.: Long-time asymptotics for the focusing Fokas–Lenells equation in the solitonic region of space-time. J. Differ....
    • 57. Wang, F.D., Ma, W.X.: A ∂-steepest descent method for oscillatory Riemann–Hilbert problems. J. Nonlinear Sci. 32(1), 10 (2022)
    • 58. Dieng, M., McLaughlin, K.T.R.: Long-time asymptotics for the NLS equation via dbar methods (2008). arXiv:0805.2807
    • 59. Cuccagna, S., Jenkins, R.: On the asymptotic stability of N-soliton solutions of the defocusing nonlinear Schrödinger equation. Commun....
    • 60. Chen, G., Liu, J.Q.: Soliton resolution for the focusing modified KdV equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire 38(6), 2005–2071...
    • 61. Liu, N., Chen,M.J., Guo, B.L.: Long-time asymptotic behavior of the fifth-order modified KdV equation in low regularity spaces. Stud....
    • 62. Yang, Y.L., Fan, E.G.: On the long-time asymptotics of the modified Camassa–Holm equation in space-time solitonic regions. Adv. Math....
    • 63. Boutet de Monvel, A., Shepelsky, D., Zielinski, L.: The short pulse equation by a Riemann–Hilbert approach. Lett. Math. Phys. 107(7),...
    • 64. Zhou, X.: L2-Sobolev space bijectivity of the scattering and inverse scattering transforms. Commun. Pure Appl. Math. 51(7), 697–731 (1998)
    • 65. Zhou, X.: Direct and inverse scattering transforms with arbitrary spectral singularities. Commun. Pure Appl. Math. 42(7), 895–938 (1989)
    • 66. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications, 2nd edn. Cambridge University Press, Cambridge (2003)
    • 67. Beals, R., Deift, P., Tomei, C.: Direct and Inverse Scattering on the Line. American Mathematical Society, Providence, RI (1988)
    • 68. Trogdon, T., Olver, S.: Riemann–Hilbert Problems, their Numerical Solution, and the Computation of Nonlinear Special Functions. SIAM,...
    • 69. Zhou, X.: The Riemann-Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20(4), 966–986 (1989)
    • 70. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno