We consider the Riesz transforms ∇L−1/2, where L≡− divA(x)∇, and A is an accretive, n × n matrix with bounded measurable complex entries, defined on Rn. We establish boundedness of these operators on Lp(Rn), for the range pn < p ≤ 2, where pn = 2n/(n + 2), n ≥ 2, and we obtain a weak-type estimate at the endpoint pn. The case p = 2 was already known: it is equivalent to the solution of the square root problem of T. Kato.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados