Ir al contenido

Documat


On the Study of the Chebyshev Property for the Families of Trigonometric Quasi-Polynomial

  • Jianfeng Huang [1] ; Yunyan Liu [1] ; Jinfeng Li [1]
    1. [1] Jinan University

      Jinan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is concerned with the Chebyshev property for the trigonometric quasipolynomials. We generalize the Derivation-Division algorithm to establish a criterion preserving the Chebyshev property of the union of Chebyshev families. By virtue of this criterion, we obtain several new Chebyshev families of quasi-polynomials and trigonometric quasi-polynomials. We also apply these families to the bifurcation analysis of a kind of differential equations, and partially improve the Khovanski˘ı theorem.

  • Referencias bibliográficas
    • 1. Alpan, G.: Chebyshev polynomials on generalized Julia sets. Comput. Methods Funct. Theory 16, 387–393 (2016)
    • 2. Bostan, A., Dumas, P.: Wronskians and linear independence. Am. Math. Mon. 117, 722–727 (2010)
    • 3. Bravo, J.L., Fernández, M., Ojeda, I.: Hilbert number for a family of piecewise nonautonomous equations. Qual. Theory Dyn. Syst. 23, 119...
    • 4. Castillo, K., da Fonseca, C.M., Petronilho, J.: On Chebyshev polynomials and the inertia of certain tridiagonal matrices. Appl. Math. Comput....
    • 5. Castillo, K., de Jesus, M.N., Petronilho, J.: A note on orthogonal polynomials described by Chebyshev polynomials. J. Math. Anal. Appl....
    • 6. Castillo, K., Mbouna, D., Petronilho, J.: A characterization of continuous q-Jacobi, Chebyshev of the first kind and Al-Salam-Chihara polynomials....
    • 7. Christiansen, J.S., Simon, B., Zinchenko, M.: Asymptotics of Chebyshev polynomials, I: subsets of R. Invent. Math. 208(1), 217–245 (2017)
    • 8. Huang, J., Li, J.: On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones. Nonlinear Anal....
    • 9. Huang, J., Liang, H., Zhang, X.: A new Chebyshev criterion and its application to planar differential systems. J. Differ. Equ. 344, 658–695...
    • 10. Huang, J., Peng, Z.: Bifurcation of a kind of piecewise smooth generalized Abel equation via first and second order analyses. Int. J....
    • 11. Karlin, S.J., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics, Pure and Applied Mathematics, vol. XV....
    • 12. Krusemeyer, M.: Why does the wronskian work? Am. Math. Mon. 95, 46–49 (1988)
    • 13. Khovanski˘ı, A.G.: Fewnomials. American Mathematical Society, Providence (1991)
    • 14. Khovanski˘ı, A.G., Yakovenko, S.: Generalized Rolle theorem in Rn and C. J. Dyn. Control Syst. 2, 103–123 (1996)
    • 15. Sipahi, R., Niculescu, S.I., Abdallah, C.T., Michiels, W., Gu, K.: Stability and stabilization of systems with time delay. IEEE Control...
    • 16. Voorhoeve, M.: On the oscillation of exponential polynomials. Math. Z. 151, 277–294 (1976)
    • 17. Wang, W.: An overview of the recent advances in delay-time-based maintenance modelling. Reliab. Eng. Syst. Saf. 106, 165–178 (2012)
    • 18. Zhang, X.M., Han, Q.L., Seuret, A., Gouaisbaut, F., He, Y.: Overview of recent advances in stability of linear systems with time-varying...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno