Ir al contenido

Documat


Traveling Wave Solutions and Bifurcations for Generalized Fornberg–Whitham Equation with Parabolic Law Nonlinearity

  • Deniu Yang [1]
    1. [1] Guangdong University of Foreign Studies

      Guangdong University of Foreign Studies

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, the generalized Fornberg–Whitham equation with parabolic law nonlinearity is studied by the bifurcation method of differential equations and the method of phase portraits analysis. Six bifurcation curves are obtained and the (c, k)-plane is divided into 45 parts. Equivalently, more different types of traveling wave solution and more diverse dynamic properties are obtained for the generalized Fornberg–Whitham equation. In some parametric conditions, a large number of new traveling wave solutions are obtained by symbolic calculation, including periodic wave solution, solitary wave, periodic pseudo-peakon and compacton solution. In particular, periodic pseudopeakon is globally smooth and compacton solution is defined in a bounded open interval.

  • Referencias bibliográficas
    • 1. Akbar, M., Wazwaz, A., Mahmud, F., Baleanu, D., Roy, R., Barman, H., Mahmoud, W., Al, Sharif M., Osman, M.: Dynamical behavior of solitons...
    • 2. Sarker S., Karim R., Akbar M., Osman M., Dey P.: Soliton solutions to a nonlinear wave equation via modern methods. J. Umm Al-Qura Univ....
    • 3. Faridi W., Myrzakulova Z., Myrzakulov R., Akgül A., Osman M.: The construction of exact solution and explicit propagating optical soliton...
    • 4. Dey, P., Sadek, L., Tharwat, M., Tharwat, M., Sarker, S., Karim, R., Akbar, M., Elazab, N., Osman, M.: Soliton solutions to generalized...
    • 5. Chakrabarty, A., Roshid, M., Rahaman, M., Abdeljawad, T., Osman, M.: Dynamical analysis of optical soliton solutions for CGL equation with...
    • 6. Ilhan, O., Manafian, J., Shahriari, M.: Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev–Petviashvili...
    • 7. Nisar, K., Ilhan, O., Abdulazeez, S., Manafian, J., Mohammed, S., Osman, M.: Novel multiple soliton solutions for some nonlinear PDEs via...
    • 8. Zhang, H., Manafian, J., Singh, G., Ilhan, O., Zekiy, A.: N-lump and interaction solutions of localized waves to the (2+1)-dimensional...
    • 9. Gu, Y., Malmir, S., Manafian, J., Ilhan, O., Ilhan, A., Othman, A.: Variety interaction between k-lump and k-kink solutions for the (3+1)-D...
    • 10. Ren, J., Ilhan, O., Bulut, H., Manafian, J.: Multiple rogue wave, dark, bright, and solitary wave solutions to the KP-BBM equation. J....
    • 11. Zhou, X., Ilhan, O., Manafian, J., Singh, G., Tuguz, N.: N-lump and interaction solutions of localized waves to the (2+1)-dimensional...
    • 12. Hong, X., Manafian, J., Ilhan, O., Alkireet, A., Nasution, M.: Multiple soliton solutions of the generalized Hirota–Satsuma–Ito equation...
    • 13. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
    • 14. Degasperis, A., Procesi, M.: Asymptotic Integrability Symmetry and Perturbation Theory, pp. 23–37. World Scientific, Singapore (1999)
    • 15. Degasperis, A., Holm, D., Hone, A.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)
    • 16. Degasperis A., Holm D., Hone A.: Integrable and non-integrable equations with peakons. Nonlinear Physics: theory and experiment II. 37–43...
    • 17. Lundmark, H., Szmigielski, J.: Multi-peakon solutions of the Degasperis–Procesi equation. Inverse Probl. 19(6), 1241 (2003)
    • 18. Fornberg, B., Whitham, G.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. A: Math. Phys....
    • 19. Zhou, J., Tian, L.: A type of bounded traveling wave solutions for the Fornberg–Whitham equation. J. Math. Anal. Appl. 346(1), 255–261...
    • 20. Dullin, H.R., Gottwald, G.A., Holm, D.: Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water...
    • 21. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis– Procesi equations. Arch. Ration. Mech. Anal....
    • 22. Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa-Holm equation. Inverse Prob. 22, 2197–2207 (2006)
    • 23. Liu, Y., Yin, Z.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267, 801–820 (2006)
    • 24. Ahmad, H., Seadawy, A., Ganie, A., Rashid, A., Khan, T., Abu-Zinadah, H.: Approximate Numerical solutions for the nonlinear dispersive...
    • 25. Wen, Z.: Several new types of bounded wave solutions for the generalized two-component Camassa– Holm equation. Nonlinear Dyn. 77(3), 849–857...
    • 26. Feng, Y., Wang, X., Bilige, S.: Evolutionary behavior and novel collision of various wave solutions to (3+1)-dimensional generalized...
    • 27. Chen, A., Li, J., Deng, X., Huang, W.: Travelling wave solutions of the Fornberg–Whitham equation. Appl. Math. Comput. 215, 3068–3075...
    • 28. Fan, X., Yang, S., Yin, J., Tian, L.: Bifurcations of traveling wave solutions for a two-component Fornberg–Whitham equation. Commun....
    • 29. He, B., Meng, Q., Li, S.: Explicit peakon and solitary wave solutions for the modified Fornberg– Whitham equation. Appl. Math. Comput....
    • 30. Leta, T., Li, J.: Various exact soliton solutions and bifurcations of a generalized Dullin–Gottwald–Holm equation with a power law nonlinearity....
    • 31. Zhang, Y., Xia, Y.: Traveling wave solutions of generalized Dullin–Gottwald–Holm equation with parabolic law nonlinearity. Qual. Theory...
    • 32. Li, J., Zhang, L.: Bifurcations of traveling wave solutions in generalized Pochhammer–Chree equation. Chaos Solitons Fractals 14(4), 581–593...
    • 33. Yang, D., Lou, Q., Zhang, J.: Bifurcations and exact soliton solutions for generalized Dullin–Gottwald– Holm equation with cubic power...
    • 34. Li, J., Dai, H.: On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach. Science Press, Beijing (2007)
    • 35. Byrd, P., Friedman, M.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno