Ir al contenido

Documat


Coexistence of Analytic and Piecewise Analytic Limit Cycles in Planar Piecewise Quadratic Differential Systems

  • Leonardo P. C. da Cruz [1] ; Alex C. Rezende [2] ; Joan Torregrosa [3] Árbol académico
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] Universidade Federal de São Carlos

      Universidade Federal de São Carlos

      Brasil

    3. [3] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the simultaneous bifurcation of limit cycles in planar piecewise quadratic differential systems separated by a straight line. These limit cycles arise from a degenerate Hopf bifurcation at two equilibrium points in the positive and negative half-planes, as well as from an equilibrium on the separation line. All the limit cycles are of small amplitude. This bifurcation creates a configuration of limit cycles of type (3, 5, 3).

      Additionally, in each half-plane, the maximum number of small-amplitude hyperbolic limit cycles that a quadratic vector field can have is three.

  • Referencias bibliográficas
    • 1. Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth modeling and simulation for switched circuits. Lecture Notes in Electrical Engineering,...
    • 2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Ma˘ıer, A.G.: Theory of bifurcations of dynamic systems on a plane. Halsted Press [John...
    • 3. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center...
    • 4. Braun, F., da Cruz, L., Torregrosa, J.: On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear Anal....
    • 5. Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 33(9), 3915–3936...
    • 6. Buzzi, C.A., Medrado, J.C., Torregrosa, J.: Limit cycles in 4-star-symmetric planar piecewise linear systems. J. Diff. Equ. 268(5), 2414–2434...
    • 7. Castillo, J., Llibre, J., Verduzco, F.: The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems. Nonlinear...
    • 8. Cherkas, L.A.: The number of limit cycles of a certain second order autonumous system. Differencial’nye Uravnenija, 12(5):944–946, 960,...
    • 9. Christopher, C.: Estimating limit cycle bifurcations from centers. In Differential equations with symbolic computation, Trends Math., pages...
    • 10. Cima, A., Gasull, A., Mañosa, V., Mañosas, F.: Algebraic properties of the Liapunov and period constants. Rocky Mount J. Math. 27(2),...
    • 11. Cima, A., Gasull, A., Mañosas, F.: A note on the Lyapunov and period constants. Qual. Theory Dyn. Syst., 19(1):Paper No. 44, 13, 2020
    • 12. da Cruz, L.P.C., Novaes, D.D., Torregrosa, J.: New lower bound for the Hilbert number in piecewise quadratic differential systems. J....
    • 13. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth dynamical systems. Applied Mathematical Sciences, vol. 163....
    • 14. Esteban, M., Freire, E., Ponce, E., Torres, F.: On normal forms and return maps for pseudo-focus points. J. Math. Anal. Appl., 507(1):Paper...
    • 15. Filippov, A.F.: Differential equations with discontinuous righthand sides. Mathematics and its Applications (Soviet Series), vol. 18....
    • 16. Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones. Internat. J. Bifur....
    • 17. Freire, E., Ponce, E., Torregrosa, J., Torres, F.: Limit cycles from a monodromic infinity in planar piecewise linear systems. J. Math....
    • 18. Freire, E., Ponce, E., Torres, F.: The discontinuous matching of two planar linear foci can have three nested crossing limit cycles. Publ....
    • 19. Galias, Z., Tucker, W.: The Songling system has exactly four limit cycles. Appl. Math. Comput., 415:Paper No. 126691, 2022
    • 20. Gasull, A. Torregrosa, J.: Center-focus problem for discontinuous planar differential equations. Int. J. Bifurc. Chaos 13(07), 1755–1765...
    • 21. Giné, J., Gouveia, L.F.S., Torregrosa, J.: Lower bounds for the local cyclicity for families of centers. J. Diff. Equ. 275, 309–331 (2021)
    • 22. Glendinning, P., Jeffrey, M.R.: An introduction to piecewise smooth dynamics. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer,...
    • 23. Gouveia, L.F.S., Torregrosa, J.: Local cyclicity in low degree planar piecewise polynomial vector fields. Nonlinear Anal. Real World Appl.,...
    • 24. Han, M.: Liapunov constants and Hopf cyclicity of Liénard systems. Ann. Diff. Equ. 15(2), 113–126 (1999)
    • 25. Huan, S.-M.: On the number of limit cycles in general planar piecewise linear differential systems with two zones having two real equilibria....
    • 26. Huan, S.-M., Yang, X.-S.: On the number of limit cycles in general planar piecewise linear systems. Discrete Contin. Dyn. Syst. 32(6),...
    • 27. Kuznetsov, Yu. A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13(08), 2157–2188...
    • 28. Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones. Dyn. Contin. Discrete...
    • 29. Lum, R., Chua, L.O.: Global properties of continuous piecewise-linear vector fields. Part I: Simplest case in R2. Memorandum UCB/ERL M90/22,...
    • 30. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Un. Mat. Ital. 2(3), 5–7 (1940)
    • 31. Novaes, D.D., Silva, L.A.: Lyapunov coefficients for monodromic tangential singularities in Filippov vector fields. J. Diff. Equ. 300,...
    • 32. Prohens, R., Torregrosa, J.: New lower bounds for the Hilbert numbers using reversible centers. Nonlinearity 32(1), 331–355 (2019)
    • 33. Romanovski, V.G., Shafer, D.S.: The center and cyclicity problems: a computational algebra approach. Birkhäuser Boston Ltd, Boston, MA...
    • 34. Roussarie, R.: Bifurcation of planar vector fields and Hilbert’s sixteenth problem. Progress in Mathematics, vol. 164. Birkhäuser Verlag,...
    • 35. Shi, S.L.: A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sinica 23(2), 153–158 (1980)
    • 36. Yu, P., Han, M.: Four limit cycles in quadratic near-integrable systems. J. Appl. Anal. Comput. 1(2), 291–298 (2011)
    • 37. Yu, P., Zeng, Y.: Visualization of four limit cycles in near-integrable quadratic polynomial systems. Int. J. Bifurc. Chaos 30(15), 2050236...
    • 38. Zegeling, A.: Nests of limit cycles in quadratic systems. Adv. Nonlinear Anal. (2024). https://doi.org/ 10.1515/anona-2024-0012
    • 39. Zhang, P.: On the distribution and number of limit cycles for quadratic systems with two foci. Qual. Theory Dyn. Syst. 3(2), 437–463 (2002)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno