Ir al contenido

Documat


A System of 2 Nonlinearly Coupled ODEs Which is Explicitly Solvable and Possibly Isochronous Provided Its Coefficients are Suitably Restricted

  • Fabio Briscese [2] ; Francesco Calogero [3] Árbol académico ; Farrin Payandeh [1]
    1. [1] Payame Noor University

      Payame Noor University

      Irán

    2. [2] Università Roma Tre, Istituto Nazionale di Alta Matematica Francesco Severi
    3. [3] Sapienza Università di Roma
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we discuss some remarkable properties of the autonomous system of 2 first-order ordinary differential equations (ODEs), which equates the derivatives x˙n(t) (n = 1, 2) of the 2 dependent variables xn(t)to the ratios of polynomials(with constant coefficients) in the 2 variables xn(t): each of the 2 (a priori different) polynomials P(n) 3 (x1, x2) in the 2 numerators is of degree 3; the 2 denominators are instead given by the same polynomial P1(x1, x2) of degree 1. Hence this system features 23 a priori arbitrary input numbers, namely the 23 coefficients defining these 3 polynomials. Our main finding is to show that if these 23 coefficients are given by 23 (explicitly provided) formulas in terms of 15 a priori arbitrary parameters, then the initial values problem (with arbitrary initial data xn(0)) for this dynamical system can be explicitly solved.

      We also show that it is possible (with the help of Mathematica) to identify 12 explicit constraints on these 23 coefficients, which are sufficient to guarantee that this system belongs to the class of systems we are focusing on. Several such explicitly solvable systems of ODEs are treated (including the subcase with P1(x1, x2) = 1, implying that the right-hand sides of the ODEs are just cubic polynomials: no denominators!).

      Examples of the solutions of several of these systems are reported and displayed, including cases in which the solutions are isochronous.

  • Referencias bibliográficas
    • 1. Garnier, R.: Sur des systèmes différentielles du second ordre dont l’ intégral général est uniforme. Annales scientifiques de l’ É. N....
    • 2. Ince, E.L.: Ordinary Differential Equations. Dover, Illinois (1956)
    • 3. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books, New York (1994)
    • 4. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)
    • 5. Calogero, F.: Isochronous Systems. Oxford University Press, Oxford (2008)
    • 6. Polyanin, A.D., Zaitsev, V.F.: Handbook of Ordinary Differential Equations. Taylor & Francis, Milton Park (2017)
    • 7. Calogero, F., Payandeh, F.: J. Math. Phys. 62, 012701 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno