Ir al contenido

Documat


Remark on the Convergence of Euler–Voigt Equations to Euler Equations in Rd

  • Wanrong Yang [2] ; Aibin Zang [1]
    1. [1] Yichun University

      Yichun University

      China

    2. [2] North Minzu University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate an approximation of the Euler equation by the Euler–Voigt equations in Rd (d = 2, 3). One can observe that a sequence of smooth solutions to the Euler–Voigt equations converges to the smooth one of Euler equations in Hm as the filter parameter (α) tends to zero with an initial velocity in Hm.

  • Referencias bibliográficas
    • 1. Bardos, C., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14, 42–76 (2013)
    • 2. Cao, Y., Lunasin, E., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models....
    • 3. Larios, A., Titi, E.S.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models....
    • 4. Larios, A., Titi, E.S.: Higher-Order Global Regularity of an Inviscid Voigt-Regularization of the ThreeDimensional Inviscid Resistive Magnetohydrodynamic...
    • 5. Lopes Filho, M.C., Nussenzveig Lopes, H.J., Titi, E.S., Zang, A.: Convergence of the 2D Euler-α to Euler equations in the Dirichlet case:...
    • 6. Lopes Filho, M.C., Nussenzveig Lopes, H.J., Titi, E.S., Zang, A.: Approximation of 2D Euler equations by the second-grade fluid equations...
    • 7. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Cambridge University Press, Cambridge, Cambridge Texts and Applied Mathematics...
    • 8. Masmoudi, N.: Remarks about the inviscid limit of the Navier-Stokes system. Commun. Math. Phys. 270, 777–788 (2007)
    • 9. Swann, H.S.G.: The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R3. Trans. Amer. Math. Soc....
    • 10. Su, W., Zang, A.: The limit behavior of the second-grade fluid equations. Math. Meth. Appl. Sci. 42, 7432–7439 (2019)
    • 11. Zang, A.: Global well-posedness for Euler–Voigt equations (In Chinese). Pure Appl Math 34, 1–6 (2018)
    • 12. Zang, A.: Kato’s type theorem for the convergence of Euler–Voigt equations to Euler equations with Dirichlet boundary conditions. Discrete...
    • 13. Zang, A.: Local well-posedness for boundary layer equations of Euler–Voigt equations in analytic setting. J. Diff. Equs. 307, 1–28 (2022)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno