Ir al contenido

Documat


Summation formulae for quadrics

  • Jayce R. Getz [1]
    1. [1] Duke University

      Duke University

      Township of Durham, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove a Poisson summation formula for the zero locus of a quadratic form in an even number of variables with no assumption on the support of the functions involved.

      The key novelty in the formula is that all “boundary terms” are given either by constants or sums over smaller quadrics related to the original quadric. We also discuss the link with the classical problem of estimating the number of solutions of a quadratic form in an even number of variables. To prove the summation formula we compute (the Arthur truncated) theta lift of the trivial representation of SL2(AF ). As previously observed by Ginzburg, Rallis, and Soudry, this is an analogue for orthogonal groups on vector spaces of even dimension of the global Schrödinger representation of the metaplectic group.

  • Referencias bibliográficas
    • Arthur, J.: A trace formula for reductive groups. II. Applications of a truncation operator. Compositio Math. 40(1), 87–121 (1980)
    • Arthur, J.: An introduction to the trace formula. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc.,...
    • Braverman, A., Kazhdan, D.: Normalized intertwining operators and nilpotent elements in the Langlands dual group. Mosc. Math. J. 2(3), 533–553...
    • Borel, A.: Commensurability classes and volumes of hyperbolic 3-manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(1):1–33 (1981)
    • Choie, Y.-J., Getz, J.R.: Schubert Eisenstein series and Poisson summation for Schubert varieties. Amer. J. Math. (accepted), arXiv:2107.01874...
    • Duke, W., Friedlander, J., Iwaniec, H.: Bounds for automorphic L-functions. Invent. Math. 112(1), 1–8 (1993)
    • Getz, J.R.: Secondary terms in asymptotics for the number of zeros of quadratic forms over number fields. J. Lond. Math. Soc. 98(2), 275–305...
    • Getz, J.R.: A summation formula for the Rankin-Selberg monoid and a nonabelian trace formula. Amer. J. Math. 142(5), 1371–1407 (2020)
    • Getz, J.R., Hsu, C.-H.: The Fourier transform for triples of quadratic spaces. Ann. Inst. Fourier (accepted), arXiv:2009.11490 (2020)
    • Getz, J.R., Hsu, C.-H., Leslie, S.: Harmonic analysis on certain spherical varieties. J. Eur. Math. Soc. 27(2), 433–541 (2023)
    • Gurevich, N. Kazhdan, D.: Fourier transforms on the basic affine space of a quasi-split group. arXiv e-prints, page arXiv:1912.07071 (2019)
    • Gurevich, N., Kazhdan, D.: Fourier transform on a cone and the minimal representation of even orthogonal group. arXiv e-prints, page arXiv:2304.13993...
    • Gurevich, N., Kazhdan, D.: Automorphic functionals for the minimal representations of groups of type Dn and En. arXiv e-prints, page arXiv:2403.19640...
    • Getz, J.R., Liu, B.: A summation formula for triples of quadratic spaces. Adv. Math. 347, 150–191 (2019)
    • Ginzburg, D., Rallis, S., Soudry, D.: On the automorphic theta representation for simply laced groups. Israel J. Math. 100, 61–116 (1997)
    • Heath-Brown, D.R.: A new form of the circle method, and its application to quadratic forms. J. Reine Angew. Math. 481, 149–206 (1996)
    • Hsu, C.-H.: In preparation
    • Jacquet, H., Shalika, J.A.: On Euler products and the classification of automorphic representations. I. Amer. J. Math. 103(3), 499–558 (1981)
    • Jacquet, H., Zagier, D.: Eisenstein series and the Selberg trace formula II. Trans. Amer. Math. Soc. 300(1), 1–48 (1987)
    • Kazhdan, D.: The minimal representation of D4. In Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris,...
    • Kobayashi, T., Mano, G.: The Schrödinger model for the minimal representation of the indefinite orthogonal group O(p, q). Mem. Amer. Math....
    • Kazhdan, D., Polishchuk, A.: Minimal representations: spherical vectors and automorphic functionals. In Algebraic groups and arithmetic, Tata...
    • Kudla, S.S., Rallis, S.: A regularized Siegel-Weil formula: the first term identity. Ann. Math. (2) 140(1), 1–80 (1994)
    • Mœglin, C., Waldspurger, J.-L.: Spectral decomposition and Eisenstein series, volume 113 of Cambridge Tracts in Mathematics. Cambridge University...
    • Platonov, V., Rapinchuk, A.: Algebraic groups and number theory, volume 139 of Pure and Applied Mathematics. Academic Press, Inc., Boston,...
    • Sakellaridis, Y.: The Schwartz space of a smooth semi-algebraic stack. Selecta Math. (N.S.) 22(4), 2401–2490 (2016)
    • Schindler, D.: Counting rational points on hypersurfaces and higher order expansions. J. Number Theory 173, 332–370 (2017)
    • Tran, T.H.: Secondary terms in asymptotics for the number of zeros of quadratic forms. p. 110. Thesis (Ph.D.)–Duke University (2020)
    • Vaughan, R.C., Wooley, T.D.: The asymptotic formula in Waring’s problem: higher order expansions. J. Reine Angew. Math. 742, 17–46 (2018)30....
    • Weil, A.: Basic number theory. Springer-Verlag, New York-Berlin (1974). (Die Grundlehren der Mathematischen Wissenschaften, Band 144)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno