Ir al contenido

Documat


Derived moduli of sections and push-forwards

  • David Kern [1] ; Étienne Mann [3] ; Cristina Manolache [4] ; Renata Picciotto [2]
    1. [1] Royal Institute of Technology

      Royal Institute of Technology

      Suecia

    2. [2] University of Cambridge

      University of Cambridge

      Cambridge District, Reino Unido

    3. [3] LAREMA, SFR MATHSTIC, Univ Angers, CNRS, 49000, Angers, France
    4. [4] Univ Sheffield, J23 Hicks building, Sheffield, UK
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We use the derived moduli of sections RSecM(Z/C) to give derived enhancements of various moduli spaces, including stable maps and stable quasi-maps, which are compatible with their usual perfect obstruction theories. As an application, we prove that G-theoretic stable map and quasi-map invariants of projective spaces are equal.

  • Referencias bibliográficas
    • Aranha, D., Khan, A.A., Latyntsev, A., Park, H., Ravi, C.: Localization theorems for algebraic stacks. arXiv: 2207.01652 (2022)
    • Alper, J.: Good moduli spaces for Artin stacks. Ann l’Institut Fourier 63(6), 2349–2402 (2013)
    • Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Ann l’Institut Fourier 58(4), 1057–1091 (2008)
    • Aranha, D., Pstragowski, P.: The intrinsic normal cone for artin stacks. arXiv:1909.07478 (2019)
    • Brav, C., Bussi, V., Joyce, D.: A Darboux theorem for derived schemes with shifted symplectic structure. J. Am. Math. Soc. 32(2), 399–443...
    • Behrend, K., Fantechi, B.: The intrinsic normal cone. Invent. Math. 128(1), 45–88 (1997)
    • Ben-Zvi, D., Calaque, D., Grivaux, J., Mann, E., Nadler, D., Pantev, T., Robalo, M., Safronov, P., Vezzosi, G.: Derived algebraic geometry....
    • Cheong, D., Ciocan-Fontanine, I., Kim, B.: Orbifold quasimap theory. Math. Ann. 363(3–4), 777–816 (2015)
    • Ciocan-Fontanine, I., Kapranov, M.: Derived Quot schemes. Ann. Sci. École Norm. Sup. (4) 34(3), 403–440 (2001)
    • Ciocan-Fontanine, I., Kapranov, M.M.: Derived Hilbert schemes. J. Am. Math. Soc. 15(4), 787–815 (2002)
    • Ciocan-Fontanine, I., Kim, B.: Moduli stacks of stable toric quasimaps. Adv. Math. 225(6), 3022–3051 (2010)
    • Ciocan-Fontanine, I., Kim, B.: Quasimap theory. In: Proceedings of the International Congress of Mathematicians—Seoul 2014, vol. II, pp. 615–633....
    • Ciocan-Fontanine, I., Kim, B.: Wall-crossing in genus zero quasimap theory and mirror maps. Algebr. Geom. 1(4), 400–448 (2014)
    • Ciocan-Fontanine, I., Kim, B.: Quasimap wall-crossings and mirror symmetry. Publ. Math. Inst. Hautes Études Sci. 131, 201–260 (2020)
    • Ciocan-Fontanine, I., Kim, B., Maulik, D.: Stable quasimaps to GIT quotients. J. Geom. Phys. 75, 17–47 (2014)
    • Calaque, D., Haugseng, R., Scheimbauer, C.: The AKSZ construction in derived algebraic geometry as an extended topological field theory. arXiv:2108.02473,...
    • Clader, E., Janda, F., Ruan, Y.: Higher-genus quasimap wall-crossing via localization. arXiv:1702.03427 (2017)
    • Clader, E., Janda, F., Ruan, Y.: Higher-genus wall-crossing in the gauged linear sigma model. Duke Math. J. 170(4), 697–773 (2021) With an...
    • Chen, Q., Janda, F., Webb, R.: Virtual cycles of stable (quasi-)maps with fields. Adv. Math. 385(49), 107781 (2021)
    • Chang, H.-L., Li, J.: Gromov–Witten invariants of stable maps with fields. Int. Math. Res. Not. 2012(18), 4163–4217 (2012)
    • Cornalba, Maurizio: Gromov–Witten invariants of stable maps with fields. Istit. Lombardo Accad. Sci. Lett. Rend. A 129(12), 111–119 (1996)
    • Chatzistamatiou, A., Rülling, K.: Vanishing of the higher direct images of the structure sheaf. Compos. Math. 151(11), 2131–2144 (2015)
    • Givental, A.: Permutation-equivariant quantum k-theory iv. dq-modules. (2015)
    • Givental, A.: Permutation-equivariant quantum k-theory v. toric q-hypergeometric functions (2015)
    • Givental, A., Tonita, V.: The Hirzebruch–Riemann–Roch theorem in true genus-0 quantum K-theory. In: Symplectic, Poisson, and noncommutative...
    • Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. (2) 79 (1964), 109–203;...
    • Halpern-Leistner, D., Preygel, A.: Mapping stacks and categorical notions of properness. Compos. Math. 159(3), 530–589 (2023)
    • Joyce, D.: An introduction to d-manifolds and derived differential geometry. In: Moduli spaces. London Math. Soc. Lect. Note Ser., vol 411,...
    • Joyce, D.: A classical model for derived critical loci. J. Differ. Geom. 101(2), 289–367 (2015)
    • Joyce, D.: Kuranishi spaces as a 2-category. In: Virtual Fundamental Cycles in Symplectic Topology. Math. Surveys Monogr., vol. 237, pp. 253–298....
    • Joyce, D., Safronov, P.: A Lagrangian neighbourhood theorem for shifted symplectic derived schemes. Ann. Fac. Sci. Toulouse Math. (6) 28(5),...
    • Kern, D.: A categorification of the quantum Lefschetz principle. arXiv Preprint, arxiv:2002.03990 (2020)
    • Khan, A.A.: Virtual fundamental classes of derived stacks I. arXiv:1909.01332, (2019)
    • Khan, A.A.: Virtual excess intersection theory. Ann. K-Theory 6(3), 559–570 (2021)
    • Khan, A.A.: K-theory and g-theory of derived algebraic stacks. Jpn. J. Math. (2022)
    • Kontsevich, M.: Enumeration of rational curves via torus actions. In: The moduli space of curves (Texel Island, 1994). Progr. Math., vol....
    • Khan, A.A., Rydh, D.: Virtual Cartier divisors and blow-ups (2019)
    • Lee, Y.-P.: Quantum K-theory. I. Foundations. Duke Math. J. 121(3), 389–424 (2004)
    • Laumon, G., Moret-Bailly, L.: Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in...
    • Li, J., Tian, G.: Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties. J. Am. Math. Soc. 11(1), 119–174 (1998)
    • Lurie, J.: Higher Topos Theory (AM-170). Princeton University Press, Princeton (2009)
    • Lurie, J.: Spectral algebraic geometry (2018)
    • Manolache, C.: Virtual pull-backs. J. Algebraic Geom. 21(2), 201–245 (2012)
    • Manolache, C.: Virtual push-forwards. Geom. Topol. 16(4), 2003–2036 (2012)
    • Manolache, C.: Stable maps and stable quotients. Compos. Math. 150(9), 1457–1481 (2014)
    • Musta¸t˘a, A., Musta¸t˘a, M.A.: Intermediate moduli spaces of stable maps. Invent. Math. 167(1), 47–90 (2007)
    • Marian, A., Oprea, D., Pandharipande, R.: The moduli space of stable quotients. Geom. Topol. 15(3), 1651–1706 (2011)
    • Mann, E., Robalo, M.: Brane actions, categorifications of Gromov–Witten theory and quantum K-theory. Geom. Topol. 22(3), 1759–1836 (2018)
    • McDuff, D., Tehrani, M., Fukaya, K., Joyce, D.: Virtual fundamental cycles in symplectic topology. Mathematical Surveys and Monographs, vol....
    • Neeman, A.: Derived categories and Grothendieck duality. In: Triangulated Categories. London Math. Soc. Lecture Note Ser., vol. 375, pp. 290–350....
    • Picciotto, R.: Moduli of Stable Maps with Fields. Columbia University (2021)
    • Popa, M., Roth, M.: Stable maps and Quot schemes. Invent. Math. 152(3), 625–663 (2003)
    • Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013)
    • Porta, M., Yu, T.Y.: Non-archimedean quantum k-invariants. arXiv preprint arXiv:2001.05515 (2020)
    • Ruan, Y., Zhang, M.: The level structure in quantum k-theory and mock theta functions (2018)
    • The Stacks project authors. The stacks project. https://stacks.math.columbia.edu (2022)
    • Schürg, T., Toën, B., Vezzosi, G.: Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories...
    • Toda, Y.: Moduli spaces of stable quotients and wall-crossing phenomena. Compos. Math. 147(5), 1479–1518 (2011)
    • Toen, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153–240 (2014)
    • Toën, B., Vezzosi, G.: Homotopical algebraic geometry. I. Topos theory. Adv. Math. 193(2), 257–372 (2005)
    • Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902), x+224 (2008)
    • Toen, B., Vezzosi, G.: Foliations and stable maps. arXiv preprint arXiv:2202.09174 (2022)
    • Tseng, H.-H., You, F.: K-theoretic quasimap invariants and their wall-crossing. arXiv:1602.06494 (2016)
    • Vezzosi, G.: Basic structures on derived critical loci. Differ. Geom. Appl. 71(11), 101635 (2020)
    • Viehweg, E.: Rational singularities of higher dimensional schemes. Proc. Am. Math. Soc. 63(1), 6–8 (1977)
    • Webb, R.: The moduli of sections has a canonical obstruction theory. Forum Math. Sigma, 10:Paper No. e78, 47 (2022)
    • Zhou, Y.: Quasimap wall-crossing for GIT quotients. Invent. Math. 227(2), 581–660 (2022)
    • Zhang, M., Zhou, Y.: K-theoretic quasimap wall-crossing. arXiv:2012.01401 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno