Ir al contenido

Documat


Weight 2 cohomology of graph complexes of cyclic operads and the handlebody group

  • Michael Borinsky [3] ; Benjamin Brück [1] ; Thomas Willwacher [2]
    1. [1] University of Münster

      University of Münster

      Kreisfreie Stadt Münster, Alemania

    2. [2] Swiss Federal Institute of Technology in Zurich

      Swiss Federal Institute of Technology in Zurich

      Zürich, Suiza

    3. [3] Institute for Theoretical Studies, ETH Zürich, Switzerland
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01018-9
  • Enlaces
  • Resumen
    • We compute the weight 2 cohomology of the Feynman transforms of the cyclic (co)operads BV and HyCom, and the top−2 weight cohomology of the Feynman transforms of DBV and Grav. Using a result of Giansiracusa, we compute, in particular, the top−2 weight cohomology of the handlebody group. We compare the result to the top−2 weight cohomology of the moduli space of curves Mg,n, recently computed by Payne and the last-named author. We also provide another proof of a recent result of Hainaut–Petersen identifying the top weight cohomology of the handlebody group with the Kontsevich graph cohomology.

  • Referencias bibliográficas
    • Arbarello, E., Cornalba, M.: Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst. Hautes Études Sci. Publ....
    • Andersson, A., Willwacher, T., Živkovi´c, M.: Oriented hairy graphs and moduli spaces of curves. arXiv:2005.00439 (2020)
    • Arone, G., Turchin, V.: Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots. Ann. Inst....
    • Borinsky, M.: On the Euler characteristic of the commutative graph complex and the top weight cohomology of Mg. Preprint. arXiv:2405.04190...
    • Borinsky, M., Vermaseren, J.: The Sn-equivariant Euler characteristic of the moduli space of graphs. Preprint. arXiv:2306.15598 (2023) To...
    • Borinsky, M., Vogtmann, K.: The Euler characteristic of the moduli space of graphs. Adv. Math. 432, 109290 (2023)
    • Chan, M., Faber, C., Galatius, S., Payne, S.: The Sn-equivariant top weight Euler characteristic of Mg,n. Am. J. Math. 145(5), 1549–1585 (2023)
    • Chan, M., Galatius, S., Payne, S.: Tropical curves, graph complexes, and top weight cohomology of Mg. J. Am. Math. Soc. 34(2), 565–594 (2021)
    • Chan, M., Galatius, S., Payne, S.: Topology of moduli spaces of tropical curves with marked points. Facets of algebraic geometry. Lond. Math....
    • Church, T., Farb, B., Putman, A.: The rational cohomology of the mapping class group vanishes in its virtual cohomological dimension. Int....
    • Conant, J., Hatcher, A., Kassabov, M., Vogtmann, K.: Assembling homology classes in automorphism groups of free groups. Comment. Math. Helv....
    • Drummond-Cole, G.C., Vallette, B.: The minimal model for the Batalin–Vilkovisky operad. Selecta Math. 19(1), 1–47 (2013)
    • Fresse, B., Turchin, V., Willwacher, T.: The rational homotopy of mapping spaces of En operads. Preprint. arXiv:1703.06123 (2017)
    • Fresse, B., Turchin, V., Willwacher, T.: On the rational homotopy type of embedding spaces of manifolds in Rn. Preprint. arXiv:2008.08146...
    • Gálvez-Carrill, I., Tonks, A., Vallette, B.: Homotopy Batalin–Vilkovisky algebras. J. Noncommun. Geom. 6(3), 539–602 (2012)
    • Geoghegan, R.: Topological Methods in Group Theory. Springer, New York (2008)
    • Getzler, E.: Operads and moduli spaces of genus 0 Riemann surfaces. The moduli space of curves (Texel Island, 1994), 199–230, Progr. Math.,...
    • Getzler, E., Kapranov, M.: Modular operads. Compos. Math. 110(1), 65–126 (1998)
    • Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. Geometry, topology, & physics, 167–201. Conf. Proc. Lecture Notes Geom....
    • Giansiracusa, J.: The framed little 2-discs operad and diffeomorphisms of handlebodies. J. Topol. 4(4), 919–941 (2011)
    • Hainaut, L., Petersen, D.: Top weight cohomology of moduli spaces of Riemann surfaces and handlebodies. Preprint. arXiv:2305.03046
    • Hensel, S.: A primer on handlebody groups. Handbook of group actions V. Adv. Lect. Math. Vol. 48, pp. 143–177. Int. Press, Somerville, MA...
    • Hirose, S.: Some homological invariants of the mapping class group of a three-dimensional handlebody. Tohoku Math. J. 55(4), 543–549 (2003)
    • Khoroshkin, A., Willwacher, T., Živkovi´c, M.: Differentials on graph complexes. Adv. Math. 307, 1184–1214 (2017)
    • Lambrechts, P., Voli´c, I.: Formality of the little N-disks operad. Mem. Amer. Math. Soc. 230(1079), 116viii+ (2014)
    • Loday, J.-L., Vallette, B.: Algebraic Operads. Springer, Berlin (2012)
    • Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. American Mathematical Society, Providence, RI (2002)
    • Payne, S., Willwacher, T.: Weight two compactly supported cohomology of moduli spaces of curves. Duke Math. J. 173 (2024), 16, 3107–3178
    • Payne, S., Willwacher, T.: The weight two compactly supported Euler characteristic of moduli spaces of curves. Pure Appl. Math. Q. 20 (2024),...
    • Payne, S., Willwacher, T.: Weight 11 compactly supported cohomology of moduli spaces of curves. Int. Math. Res. Not. IMRN 2024, 8, 7060–7098
    • Turchin, V., Willwacher, T.: On the homotopy type of the spaces of spherical knots in Rn. Münster J. Math. 14, 537–558 (2021)
    • Ward, B.C.: Massey Products for Graph Homology. Int. Math. Res. Not. 11, 8086–8161 (2022)
    • Ward, B.C.: Six operations formalism for generalized operads. Theory Appl. Categ. 34, 121–169 (2019)
    • Willwacher, T.M.: Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra. Invent. Math. 200(3), 671–760 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno