Ir al contenido

Documat


Existential uniform p-adic integration and descent for integrability and largest poles

  • Raf Cluckers [1]
    1. [1] Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, 59000, Lille, France
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01023-y
  • Enlaces
  • Resumen
    • Since the work by Denef, p-adic cell decomposition provides a well-established method to study p-adic and motivic integrals. In this paper, we present a variant of this method that keeps track of existential quantifiers. This enables us to deduce descent properties for p-adic integrals. In particular, we show that integrability for ‘existential’ functions descends from any p-adic field to any p-adic subfield. As an application, we obtain that the largest pole of certain Poincaré series, which are generating series of p-adic point counts, can only increase when passing to field extensions. As a side result, we prove a relative quantifier elimination statement for Henselian valued fields of characteristic zero that preserves existential formulas.

  • Referencias bibliográficas
    • Anscombe, S., Dittmann, P., Fehm, A.: Axiomatizing the existential theory of Fq ((t)). Algebra Number Theory 17(11), 2013–2032 (2023)
    • Anscombe, S., Fehm, A.: The existential theory of equicharacteristic Henselian valued fields. Algebra Number Theory 10(3), 665–683 (2016)
    • Arnold, V., Gusein-Zade, S., Varchenko, A.: Singularities of differentiable maps. Volume 2. Modern Birkhäuser Classics. Monodromy and asymptotics...
    • Cluckers, R., Gordon, J., Halupczok, I.: Integrability of oscillatory functions on local fields: transfer principles. Duke Math. J. 163(8),...
    • Cluckers, R., Gordon, J., Halupczok, I.: Uniform analysis on local fields and applications to orbital integrals. Trans. Am. Math. Soc. Ser....
    • Cluckers, R., Glazer, I., Hendel, Y.I.: A number theoretic characterization of E-smooth and (FRS) morphisms: estimates on the number of Z/pkZ-points....
    • Cluckers, R., Halupczok, I.: Integration of functions of motivic exponential class, uniform in all non-Archimedean local fields of characteristic...
    • Cluckers, R., Loeser, F.: Constructible motivic functions and motivic integration. Invent. Math. 173(1), 23–121 (2008)
    • Cluckers, R., Loeser, F.: Constructible exponential functions, motivic Fourier transform and transfer principle. Ann. Math. (2) 171(2), 1011–1065...
    • Cohen, P.J.: Decision procedures for real and p-adic fields. Commun. Pure Appl. Math. 22, 131–151 (1969)
    • Denef, J.: The rationality of the Poincaré series associated to the p-adic points on a variety. Invent. Math. 77(1), 1–23 (1984)
    • Denef, J.: p-adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math. 369, 154–166 (1986)
    • Denef, J.: Report on Igusa’s local zeta function. In: Séminaire Bourbaki, Vol. 1990/91. Exp. No. 741, Astérisque 201-203, 359–386 (1991)
    • Eisenbud, D.: Commutative algebra. Vol. 150. Graduate Texts in Mathematics. With a view toward algebraic geometry. Springer, New York, pp....
    • Flenner, J.: Relative decidability and definability in Henselian valued fields. J. Symb. Log. 76(4), 1240–1260 (2011)
    • Igusa, J.: Complex powers and asymptotic expansions. II. Asymptotic expansions. J. Reine Angew. Math. 278(279), 307–321 (1975)
    • Kartas, K.: Diophantine problems over tamely ramified fields. J. Algebra 617, 127–159 (2023)
    • Kollár, J.: Singularities of pairs. In: Algebraic geometry—Santa Cruz 1995. Vol. 62. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence,...
    • Krasner, M.: A class of hyperrings and hyperfields. Int. J. Math. Math. Sci. 6(2), 307–311 (1983)
    • Kuhlmann, F.-V.: The algebra and model theory of tame valued fields. J. Reine Angew. Math. 719, 1–43 (2016)
    • Linzi, A., Touchard, P.: On the hyperfields associated to valued fields (2022). arXiv:2211.05082 [math.RA]
    • Meuser, D.: On the rationality of certain generating functions. Math. Ann. 256(3), 303–310 (1981)
    • Musta¸tˇa, M.: Singularities of pairs via jet schemes. J. Am. Math. Soc. 15(3), 599–615 (2002)
    • Musta¸tˇa, M.: IMPANGA lecture notes on log canonical thresholds. In: Contributions to algebraic geometry. EMS Ser. Congr. Rep. Notes by Tomasz...
    • Oesterlé, J.: Réduction modulo pn des sous-ensembles analytiques fermés de Z N p . Invent. Math. 66(2), 325–341 (1982)
    • Pas, J.: Uniform p-adic cell decomposition and local zeta functions. J. Reine Angew. Math. 399, 137–172 (1989)
    • Pas, J.: Cell decomposition and local zeta functions in a tower of unramified extensions of a p-adic field. Proc. Lond. Math. Soc. (3) 60(1),...
    • Pas, J.: On the angular component map modulo P. J. Symb. Log. 55(3), 1125–1129 (1990)
    • Rideau, S.: Some properties of analytic difference valued fields. J. Inst. Math. Jussieu 16(3), 447–499 (2017)
    • Serre, J.-P.: Local fields. Vol. 67. Graduate Texts in Mathematics. Translated from the French by Marvin Jay Greenberg. Springer, New York-Berlin,...
    • Veys, W., Zúñiga-Galindo, W.A.: Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra. Trans. Am. Math....
    • Weispfenning, V.: On the elementary theory of Hensel fields. Ann. Math. Log. 10(1), 59–93 (1976)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno