Ir al contenido

Documat


Homotopy path algebras

  • David Favero [1] ; Jesse Huang [2]
    1. [1] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

    2. [2] University of Waterloo

      University of Waterloo

      Canadá

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01021-0
  • Enlaces
  • Resumen
    • We define a basic class of algebras which we call homotopy path algebras. We find that such algebras always admit a cellular resolution and detail the intimate relationship between these algebras, stratifications of topological spaces, and entrance/exit paths. As examples, we prove versions of homological mirror symmetry due to Bondal–Ruan for toric varieties and due to Berglund–Hübsch–Krawitz for hypersurfaces with maximal symmetry. We also demonstrate that a form of shellability implies Koszulity and the existence of a minimal cellular resolution. In particular, when the algebra determined by the image of the toric Frobenius morphism is directable, then it is Koszul and admits a minimal cellular resolution.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno