Ir al contenido

Documat


Sails for universal quadratic forms Open access Published: 20 February 2025

  • Vítězslav Kala [1] ; Siu Hang Man [1]
    1. [1] Charles University in Prague

      Charles University in Prague

      Chequia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01022-z
  • Enlaces
  • Resumen
    • We establish a new connection between sails, a key notion in the geometric theory of generalised continued fractions, and arithmetic of totally real number fields, specifically, universal quadratic forms and additively indecomposable integers. Our main application is to biquadratic fields, for which we show that if their signature rank is at least 3, then ranks of universal forms and numbers of indecomposables grow as a power of the discriminant. We also construct a family in which these numbers grow only logarithmically.

  • Referencias bibliográficas
    • Bhargava, M., Hanke, J. Universal quadratic forms and the 290-theorem, 2011. Preprint
    • Blomer, V., Kala, V.: Number fields without universal n-ary quadratic forms. Math. Proc. Camb. Philos. Soc. 159, 239–252 (2015)
    • Blomer, V., Kala, V.: On the rank of universal quadratic forms over real quadratic fields. Doc. Math. 23, 15–34 (2018)
    • Chatelain, D.: Bases des entiers des corps composés par des extensions quadratiques de Q. Ann. Sci. Univ. Besançon Math. 6, 38 (1973)
    • Chan, W.K., Kim, M.-H., Raghavan, S.: Ternary universal integral quadratic forms. Jpn. J. Math. 22, 263–273 (1996)
    • Cech, M., Lachman, D., Svoboda, J., Tinková, M., Zemková, K.: Universal quadratic forms and inde- ˇ composables over biquadratic fields. Math....
    • Cusick, T.: Lower bounds for regulators. In: Number Theory Noordwijkerhout. volume 1068 of Lecture Notes in Mathematics, pp. 63–73. Springer,...
    • Dummit, D.S., Dummit, E.P., Kisilevsky, H.: Signature ranks of units in cyclotomic extensions of abelian number fields. Pac. J. Math. 298(2),...
    • Dress, A., Scharlau, R.: Indecomposable totally positive numbers in real quadratic orders. J. Number Theory 14, 292–306 (1982)
    • Estes, D.R., Hsia, J.S.: Exceptional integers of some ternary quadratic forms. Adv. Math. 45(3), 310–318 (1982)
    • Earnest, A.G., Khosravani, A.: Universal positive quaternary quadratic lattices over totally real number fields. Mathematika 44, 342–347 (1997)
    • He, Z., Hu, Y., Xu, F.: On indefinite k-universal integral quadratic forms over number fields. Math. Z. 304, 20 (2023)
    • Heine, E., Jacobi, C.G.J.: Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet...
    • Hsia, J.S., Kitaoka, Y., Kneser, M.: Representations of positive definite quadratic forms. J. Reine Angew. Math. 301, 132–141 (1978)
    • Jacobson, M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in Mathematics. Springer, New York (2009)
    • Kala, V.: Universal quadratic forms and elements of small norm in real quadratic fields. Bull. Aust. Math. Soc. 94, 7–14 (2016)
    • Kala, V.: Number fields without universal quadratic forms of small rank exist in most degrees. Math. Proc. Camb. Philos. Soc. 174, 225–231...
    • Karpenkov, O.: Geometry of Continued Fractions. Algorithms and Computation in Mathematics, vol. 26, 2nd edn. Springer, Berlin (2022)
    • Karpenkov, O.: On a periodic Jacobi–Perron type algorithm. Monatsh. Math. 205, 531–601 (2024)
    • Khinchin, A.: Continued Fractions. Dover Publications, New York (1964)
    • Kim, B.M.: Universal octonary diagonal forms over some real quadratic fields. Comment. Math. Helv. 75, 410–414 (2000)
    • Kim, B.M., Kim, M.-H., Park, D.: Real quadratic fields admitting universal lattices of rank 7. J. Number Theory 233, 456–466 (2022)
    • Kim, D., Lee, S.H.: Lifting problem for universal quadratic forms over totally real cubic number fields. Bull. Lond. Math. Soc. 56(3), 1192–1206...
    • Klein, F. Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung. Nachr. Ges. Wiss. Göttingen 357–359 (1895)
    • Kala, V., Sgallová, E., Tinková, M.: Arithmetic of cubic number fields: Jacobi–Perron, Pythagoras, and indecomposables, 2023. To appear in...
    • Kala, V., Tinková, M.: Universal quadratic forms, small norms, and traces in families of number fields. Int. Math. Res. Not. 2023(9), 7541–7577...
    • Krásenský, J., Tinková, M., Zemková, K.: There are no universal ternary quadratic forms over biquadratic fields. Proc. Edinb. Math. Soc. 2(63),...
    • Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math J. 10, 65–85 (1956)
    • Kala, V., Yatsyna, P.: Lifting problem for universal quadratic forms. Adv. Math. 377, 107497 (2021)
    • Kala, V., Yatsyna, P.: On Kitaoka’s conjecture and lifting problem for universal quadratic forms. Bull. Lond. Math. Soc. 55, 854–864 (2023)
    • Kala, V., Yatsyna, P., Zmija, B. Real quadratic fields with a universal form of given rank have density zero, 2023. arxiv:2302.12080
    • Maaß, H.: Über die Darstellung total positiver Zahlen des Körpers R(√5) als Summe von drei Quadraten. Abh. Math. Sem. Univ. Hamburg 14, 185–191...
    • Man, S.H.: Minimal rank of universal lattices and number of indecomposable elements in real multiquadratic fields. Adv. Math. 447, 109694...
    • Perron, O.: Grundlagen für eine Theorie des Jacobischen Kettenalgorithmus. Math. Ann. 64, 1–76 (1907)
    • Perron, O. Die Lehre von den Kettenbrüchen, Band I: Elementare Kettenbrüche. Vieweg+Teubner Verlag Wiesbaden, 3rd edn (1977)
    • Regev, O., Stephens-Davidowitz, N. A simple proof of a reverse Minkowski theorem for integral lattices, 2023. arxiv:2306.03697
    • Schmal, B.: Diskriminanten, Z-Ganzheitsbasen und relative Ganzheitsbasen bei multiquadratischen Zahlkörpern. Arch. Math. 52, 245–257 (1989)
    • Shanks, D.: The simplest cubic fields. Math. Comp. 28(128), 1137–1152 (1974)
    • Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect....
    • Siegel, C.L.: Sums of m-th powers of algebraic integers. Ann. Math. 46, 313–339 (1945)
    • Tinková, M.: Trace and norm of indecomposable integers in cubic orders. Ramanujan J. 61(4), 1121– 1144 (2023)
    • Voutier, P.: Families of periodic Jacobi-Perron algorithms for all period lengths. J. Number Theory 168, 472–486 (2016)
    • Williams, K.S.: Integers of biquadratic fields. Canad. Math. Bull. 13, 519–526 (1970)
    • Yatsyna, P.: A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real field. Comment. Math. Helvet....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno