Ir al contenido

Documat


Topologically and rationally slice knots

  • Jennifer Hom [1] ; Sungkyung Kang [2] ; JungHwan Park [3]
    1. [1] Georgia Institute of Technology

      Georgia Institute of Technology

      Estados Unidos

    2. [2] University of Oxford

      University of Oxford

      Oxford District, Reino Unido

    3. [3] Department of Mathematical Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01020-1
  • Enlaces
  • Resumen
    • A knot in S3 is topologically slice if it bounds a locally flat disk in B4. A knot in S3 is rationally slice if it bounds a smooth disk in a rational homology ball. We prove that the smooth concordance group of topologically and rationally slice knots admits a Z∞ subgroup. All previously known examples of knots that are both topologically and rationally slice were of order two. As a direct consequence, it follows that there are infinitely many topologically slice knots that are strongly rationally slice but not slice.

  • Referencias bibliográficas
    • Cha, J.C.: The Structure of the Rational Concordance Group of Knots. Mem. Amer. Math. Soc. 189, no. 885, x+95 (2007)
    • Cha, J.C.: Primary decomposition in the smooth concordance group of topologically slice knots. Forum Math. Sigma 9, 37 (2021)
    • Cochran, T.D., Harvey, S., Horn, P.: Filtering smooth concordance classes of topologically slice knots. Geom. Topol. 17(4), 2103–2162 (2013)
    • Cha, J.C., Kim, M.H.: The bipolar filtration of topologically slice knots. Adv. Math. 388, 107868 (2021)
    • Dai, I., Hom, J., Stoffregen, M., Truong, L.: More concordance homomorphisms from knot Floer homology. Geom. Topol. 25(1), 275–338 (2021)
    • Endo, H.: Linear independence of topologically slice knots in the smooth cobordism group. Topol. Appl. 63(3), 257–262 (1995)
    • Feller, P., Park, J., Ray, A.: On the Upsilon invariant and satellite knots. Math. Z. 292(3–4), 1431–1452 (2019)
    • Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17(3), 357–453 (1982)
    • Fintushel, R., Stern, R.J.: A μ-invariant One Homology 3-sphere that Bounds an Orientable Rational Ball, Four-Manifold (Durham, N.H. 1982)...
    • Hedden, M., Kirk, P.: Instantons, concordance, and Whitehead doubling. J. Differ. Geom. 91(2), 281–319 (2012)
    • Hedden, M., Kim, S.-G., Livingston, C.: Topologically slice knots of smooth concordance order two. J. Differ. Geom. 102(3), 353–393 (2016)
    • Hom, J., Kang, S., Park, J., Stoffregen, M.: Linear independence of rationally slice knots. Geom. Topol. 26(7), 3143–3172 (2022)
    • Hendricks, K., Manolescu, C.: Involutive Heegaard Floer homology. Duke Math. J. 166(7), 1211–1299 (2017)
    • Hendricks, K., Manolescu, C., Zemke, I.: A connected sum formula for involutive Heegaard Floer homology. Sel. Math. 24(2), 1183–1245 (2018)
    • Hom, J.: An infinite-rank summand of topologically slice knots. Geom. Topol. 19(2), 1063–1110 (2015)
    • Hedden, M., Pinzón-Caicedo, J.: Satellites of infinite rank in the smooth concordance group. Invent. Math. 225(1), 131–157 (2021)
    • Kang, S.: Involutive knot Floer homology and bordered modules, arXiv preprint arXiv:2202.12500 (2022)
    • Kim, M.H., Kim, S.-G., Kim, T.: One-bipolar topologically slice knots and primary decomposition. Int. Math. Res. Not. IMRN 2022(11), 8314–8346...
    • Kim, M.H., Park, K.: An infinite-rank summand of knots with trivial Alexander polynomial. J. Symplectic Geom. 16(6), 1749–1771 (2018)
    • Kang, S., Park, J.: Torsion in the knot concordance group and cabling, arXiv preprint arXiv:2207.11870 (2022)
    • Levine, J.: Knot cobordism groups in codimension two. Comment. Math. Helv. 44, 229–244 (1969)
    • Lipshitz, R., Ozsváth, P., Thurston, D.: Heegaard Floer homology as morphism spaces. Quantum Topol. 2(4), 381–449 (2011)
    • Lipshitz, R., Ozsváth, P., Dylan, T.: Bordered Heegaard Floer homology, vol. 254. American Mathematical Society, Providence (2018)
    • Ozsváth, P., Stipsicz, A., Szabó, Z.: Concordance homomorphisms from knot Floer homology. Adv. Math. 315, 366–426 (2017)
    • Zhan, B.: bfh_python, https://github.com/bzhan/bfh_python

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno