Ir al contenido

Documat


Koszul graded Möbius algebras and strongly chordal graphs

  • Adam LaClair [1] ; Matthew Mastroeni [2] ; Jason McCullough [3] ; Irena Peeva [4]
    1. [1] Purdue University

      Purdue University

      Township of Wabash, Estados Unidos

    2. [2] SUNY Polytechnic Institute

      SUNY Polytechnic Institute

      City of Utica, Estados Unidos

    3. [3] Iowa State University

      Iowa State University

      Township of Franklin, Estados Unidos

    4. [4] Cornell University

      Cornell University

      City of Ithaca, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01029-6
  • Enlaces
  • Resumen
    • The graded Möbius algebra of a matroid is a commutative graded algebra which encodes the combinatorics of the lattice of flats of the matroid. As a special subalgebra of the augmented Chow ring of the matroid, it plays an important role in the recent proof of the Dowling–Wilson Top Heavy Conjecture. Recently, Mastroeni and McCullough proved that the Chow ring and the augmented Chow ring of a matroid are Koszul. We study when graded Möbius algebras are Koszul. We characterize the Koszul graded Möbius algebras of cycle matroids of graphs in terms of properties of the graphs. Our results yield a new characterization of strongly chordal graphs via edge orderings.

  • Referencias bibliográficas
    • Ardila, F., Boocher, A.: The closure of a linear space in a product of lines. J. Algebraic Combin. 43(1), 199–235 (2016)
    • Braden, T., Huh, J., Matherne, J.P., Proudfoot, N., Wang, B.: Singular Hodge theory for combinatorial geometries. (2020) arXiv:2010.06088
    • Braden, T., Huh, J., Matherne, J.P., Proudfoot, N., Wang, B.: A semi-small decomposition of the Chow ring of a matroid. Adv. Math. 409, 49...
    • Björner, A.: The homology and shellability of matroids and geometric lattices. In: Matroid applications. volume 40 of Encyclopedia Math. Appl....
    • Björner, A., Ziegler, G.M.: Broken circuit complexes: factorizations and generalizations. J. Combin. Theory Ser. B 51(1), 96–126 (1991)
    • Caviglia, G.: The pinched Veronese is Koszul. J. Algebraic Combin. 30(4), 539–548 (2009)
    • Caviglia, G., Conca, A.: Koszul property of projections of the Veronese cubic surface. Adv. Math. 234, 404–413 (2013)
    • Conca, A., De Negri, E., Evelina Rossi, M.: Koszul algebras and regularity. In Commutative algebra, pages 285–315. Springer, New York (2013)
    • Cordovil, R., Forge, D., Klein, S.: How is a chordal graph like a supersolvable binary matroid? Discrete Math. 288(1–3), 167–172 (2004)
    • Conca, A.: Koszul algebras and their syzygies. In Combinatorial algebraic geometry, volume 2108 of Lecture Notes in Math. pages 1–31. Springer,...
    • Coron, B.: Supersolvability of built lattices and Koszulness of generalized Chow rings. (2023). arXiv:2302.13072
    • Conca, A.: M Evelina Rossi, and Giuseppe Valla: Gröbner flags and Gorenstein algebras. Compos. Math. 129(1), 95–121 (2001)
    • Dotsenko, V.: Homotopy invariants for M0,n via Koszul duality. Invent. Math. 228(1), 77–106 (2022)
    • Falk, M.: Line-closed matroids, quadratic algebras, and formal arrangements. Adv. in Appl. Math. 28(2), 250–271 (2002)
    • Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43(2–3), 173–189 (1983)
    • Ferroni, L., Matherne, J.P., Stevens, M., Vecchi, L.: Hilbert-Poincaré series of matroid Chow rings and intersection cohomology. Adv. Math....
    • Fröberg, R.: Koszul algebras. In Advances in commutative ring theory (Fez, 1997), volume 205 of Lecture Notes in Pure and Appl. Math., pages...
    • Feichtner, E.M., Yuzvinsky, S.: Chow rings of toric varieties defined by atomic lattices. Invent. Math. 155(3), 515–536 (2004)
    • Greene, C.: On the Möbius algebra of a partially ordered set. Adv. Math. 10, 177–187 (1973)
    • Grayson, D.R., Stillman, M. E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
    • Gulliksen, T.H.: Massey operations and the Poincaré series of certain local rings. J. Algebra 22, 223–232 (1972)
    • Herzog, J.: Algebra retracts and Poincaré-series. Manuscripta Math. 21(4), 307–314 (1977)
    • Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In Commutative algebra and combinatorics (Kyoto,...
    • Huh, J., Wang, B.: Enumeration of points, lines, planes, etc. Acta Math. 218(2), 297–317 (2017)
    • Levin, G.: Large homomorphisms of local rings. Math. Scand. 46(2), 209–215 (1980)
    • Mastroeni, M., McCullough, J.: Chow rings of matroids are Koszul. Math. Ann. (2022)
    • Maeno, T., Numata, Y.: Sperner property and finite-dimensional Gorenstein algebras associated to matroids. J. Commut. Algebra 8(4), 549–570...
    • Mayhew, D., Probert, A.: Supersolvable saturated matroids and chordal graphs. Adv. Appl. Math. 153, 36 (2024)
    • Mastroeni, M., Schenck, H., Stillman, M.: Quadratic Gorenstein rings and the Koszul property I. Trans. Am. Math. Soc. 374(2), 1077–1093 (2021)
    • Ohsugi, H., Hibi, T.: Koszul bipartite graphs. Adv. in Appl. Math. 22(1), 25–28 (1999)
    • Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent. Math. 56(2), 167–189 (1980)
    • Oxley, J.: Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition (2011)
    • Peeva, I.: Hyperplane arrangements and linear strands in resolutions. Trans. Am. Math. Soc. 355(2), 609–618 (2003)
    • Peeva, I.: Graded syzygies. Algebra and Applications, vol. 14. Springer-Verlag, London Ltd, London (2011)
    • Polishchuk, A., Positselski, L.: Quadratic algebras. University Lecture Series, vol. 37. American Mathematical Society, Providence, RI (2005)
    • Priddy, S.B.: Koszul resolutions. Trans. Amer. Math. Soc. 152, 39–60 (1970)
    • Probert, A.M.: Chordality in Matroids. PhD thesis, Victoria University of Wellington, 2018. In Search of The Converse to Hlinˇený ’s Theorem
    • Papadima, S., Yuzvinsky, S.: On rational K[π, 1]-spaces and Koszul algebras. J. Pure Appl. Algebra 144(2), 157–167 (1999)
    • Roos, J.E.: Commutative non-Koszul algebras having a linear resolution of arbitrarily high order: applications to torsion in loop space homology....
    • Solomon, L.: The Burnside algebra of a finite group. J. Combinatorial Theory 2, 603–615 (1967)
    • Schenck, H.K., Suciu, A.I.: Lower central series and free resolutions of hyperplane arrangements. Trans. Am. Math. Soc. 354(9), 3409–3433...
    • Stanley, R.P.: Supersolvable lattices. Algebra Universalis 2, 197–217 (1972)
    • Shelton, B., Yuzvinsky, S.: Koszul algebras from graphs and hyperplane arrangements. J. London Math. Soc. 56(3), 477–490 (1997)
    • Tran, T.N., Tsujie, S.: MAT-free graphic arrangements and a characterization of strongly chordal graphs by edge-labeling. Algebr. Combinat....
    • Welsh, D.J.A.: Matroid theory. L. M. S. Monographs, No. 8. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York (1976)
    • West, D.B.: Introduction to Graph Theory. Prentice Hall Inc, Upper Saddle River (1996)
    • Yuzvinsky, S.: Orlik-Solomon algebras in algebra and topology. Russian Math. Surveys 56(2), 293–364 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno