Ir al contenido

Documat


On the big quantum cohomology of coadjoint varieties

  • Nicolas Perrin [1] ; Maxim N. Smirnov [2]
    1. [1] Laurent Schwartz Center for Mathematics

      Laurent Schwartz Center for Mathematics

      Arrondissement de Palaiseau, Francia

    2. [2] University of Augsburg

      University of Augsburg

      Kreisfreie Stadt Augsburg, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01017-w
  • Enlaces
  • Resumen
    • This paper is devoted to the study of the quantum cohomology of coadjoint varieties of simple algebraic groups across all Dynkin types. We determine the non-semisimple factors of the small quantum cohomology ring and relate them to ADE-singularities. Moreover, we show that the big quantum cohomology of a coadjoint variety is always generically semisimple even though in most cases the small quantum cohomology is not.

  • Referencias bibliográficas
    • Altman, A.B., Kleiman, S.L.: Foundations of the theory of Fano schemes. Compositio Math. 34(1), 3–47 (1977)
    • Beauville, A.: Quantum cohomology of complete intersections. Mat. Fiz. Anal. Geom. 2(3–4), 384–398 (1995)
    • Belmans, P., Kuznetsov, A., Smirnov, M.: Derived categories of the Cayley plane and the coadjoint Grassmannian of type F. Transformation Groups...
    • Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Schubert cells, and the cohomology of the spaces G/P. Uspehi Mat. Nauk 28(3(171)), 3–26 (1973)
    • Björner, A., Brenti, F.: Combinatorics of Coxeter groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005)
    • Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. 2(57), 115–207...
    • Bourbaki, N.: ’Eléments de mathématique. Masson, Paris (1981). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras....
    • Brion, M., Lakshmibai, V.: A geometric approach to standard monomial theory. Represent. Theory 7, 651–680 (2003)
    • Buch, A.S., Chaput, P.E., Mihalcea, L.C., Perrin, N.: Positivity of cominuscule quantum K-theory. To appear
    • Buch, A.S., Kresch, A., Tamvakis, H.: Quantum Pieri rules for isotropic Grassmannians. Invent. Math. 178(2), 345–405 (2009)
    • Chaput, P.E., Manivel, L., Perrin, N.: Quantum cohomology of minuscule homogeneous spaces III. Semi-simplicity and consequences. Can. J. Math....
    • Chaput, P.E., Perrin, N.: On the quantum cohomology of adjoint varieties. Proc. Lond. Math. Soc. (3) 103(2), 294–330 (2011)
    • Chaput, P.-E., Perrin, N.: Towards a Littlewood-Richardson rule for Kac-Moody homogeneous spaces. J. Lie Theory 22(1), 17–80 (2012)
    • Cruz Morales, J.A., Mellit, A., Perrin, N., Smirnov, M.: On quantum cohomology of Grassmannians of isotropic lines, unfoldings of An-singularities,...
    • Demazure, M.: Invariants symétriques entiers des groupes de Weyl et torsion. Invent. Math. 21, 287– 301 (1973)
    • Fock, V.V., Goncharov, A.B.: Cluster X-varieties, amalgamation, and Poisson-Lie groups. In Algebraic Geometry and Number Theory, volume 253...
    • Fonarev, A.: Full exceptional collections on Lagrangian Grassmannians. Int. Math. Res. Not. IMRN 2, 1081–1122 (2022). arXiv:1911.08968
    • Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In Algebraic geometry—Santa Cruz 1995, volume 62 of Proc. Sympos....
    • Fulton, W., Woodward, C.: On the quantum product of Schubert classes. J. Algebr. Geom. 13(4), 641–661 (2004)
    • Galkin, S., Mellit, A., Smirnov, M.: Dubrovin’s conjecture for IG(2, 6). Int. Math. Res. Not. IMRN 18, 8847–8859 (2015)
    • Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to singularities and deformations. Springer Monographs in Mathematics. Springer, Berlin...
    • Guseva, L.: On the derived category of text IGr(3; 8). Mat. Sb. 211(7), 24–59 (2020). arXiv:1810.07777
    • Hertling, C.: Frobenius manifolds and moduli spaces for singularities. Cambridge Tracts in Mathematics, vol. 151. Cambridge University Press,...
    • Hertling, C., Manin, Y.I.: Weak Frobenius manifolds. Int. Math. Res. Not. 6, 277–286 (1999)
    • Jantzen, J.C.: Representations of algebraic groups. Pure and Applied Mathematics, vol. 131. Academic Press Inc, Boston, MA (1987)
    • Kuznetsov, A., Polishchuk, A.: Exceptional collections on isotropic Grassmannians. J. Eur. Math. Soc. (JEMS) 18(3), 507–574 (2016). arXiv:1110.5607
    • Kuznetsov, A., Smirnov, M.: On residual categories for Grassmannians. Proc. Lond. Math. Soc. (3) 120(5), 617–641 (2020)
    • Kuznetsov, A., Smirnov, M.: Residual categories for (co)adjoint Grassmannians in classical types. Compos. Math. 157(6), 1172–1206 (2021)....
    • Landsberg, J.M., Manivel, L.: On the projective geometry of rational homogeneous varieties. Comment. Math. Helv. 78(1), 65–100 (2003)
    • Manin, Y.I.: Frobenius manifolds, quantum cohomology, and moduli spaces. American Mathematical Society Colloquium Publications, vol. 47. American...
    • Mellit, A., Perrin, N, Smirnov, M.: Update on quantum cohomology of I G(2, 2n). Available at arXiv:1510.07903
    • Perrin, N.: Semisimple quantum cohomology of some Fano varieties. Available at arXiv:1405.5914v1
    • Ramanathan, A.: Equations defining Schubert varieties and Frobenius splitting of diagonals. Inst. Hautes Études Sci. Publ. Math. 65, 61–90...
    • Reid, M.: The complete intersection of two or more quadrics
    • Smirnov, M.: Littlewood–Richardson Calculator. Available at: https://github.com/msmirnov18/ littlewood-richardson-rule
    • Smirnov, M.: On the derived category of the adjoint Grassmannian of type F. Available at arXiv:2107.07814
    • Smirnov, M.: Quantum Chevalley Calculator. Available at: https://github.com/msmirnov18/quantumchevalley-formula
    • Stembridge, J.R.: On the fully commutative elements of Coxeter groups. J. Algebr. Comb. 5(4), 353– 385 (1996)
    • Šošita˘ıšvili, A.N.: Functions with isomorphic Jacobian ideals. Funkc. Anal. i Priložen. 10(2), 57–62 (1976)
    • The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0) (2020). https:// www.sagemath.org
    • Thomas, H., Yong, A.: A combinatorial rule for (co)minuscule Schubert calculus. Adv. Math. 222(2), 596–620 (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno