Ir al contenido

Documat


A proof-theoretic metatheorem for nonlinear semigroups generated by an accretive operator and applications

  • Nicholas Pischke [1]
    1. [1] Technical University of Darmstadt

      Technical University of Darmstadt

      Kreisfreie Stadt Darmstadt, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01027-8
  • Enlaces
  • Resumen
    • We further develop the theoretical framework of proof mining, a program in mathematical logic that seeks to quantify and extract computational information from prima facie ‘non-computational’ proofs from the mainstream mathematical literature. To that end, we establish logical metatheorems that allow for the treatment of proofs involving nonlinear semigroups generated by an accretive operator, structures which in particular arise in the study of the solutions and asymptotic behavior of differential equations. In that way, the here established metatheorems facilitate a theoretical basis for the application of methods from the proof mining program to the wide variety of mathematical results established in the context of that theory since the 1970’s. We in particular illustrate the applicability of the new systems and their metatheorems introduced here by providing two case studies on two central results due to Reich and Plant, respectively, on the asymptotic behavior of said semigroups and the resolvents of their generators where we derive rates of convergence for the limits involved which are, moreover, polynomial in all data.

  • Referencias bibliográficas
    • Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Springer, Netherlands (1976)
    • Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010)
    • Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, Cham...
    • Bezem, M.: Strongly majorizable functionals of finite type: a model for bar recursion containing discontinuous functionals. J. Symb. Logic...
    • Brezis, H.: On a problem of T. Kato. Commun. Pure Appl. Math. 24, 1–6 (1971)
    • Brezis, H., Pazy, A.: Accretive sets and differential equations in Banach spaces. Isr. J. Math. 8, 367–383 (1970)
    • Browder, F.E.: Non-linear equations of evolution. Ann. Math. 80(3), 485–523 (1964)
    • Clarkson, J.A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40(3), 396–414 (1936)
    • Crandall, M.G.: A generalized domain for semigroup generators. Proc. Am. Math. Soc. 37, 434–440 (1973)
    • Crandall, M.G., Liggett, T.M.: Generation of semigroups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)
    • 11. Crandall, M.G., Pazy, A.: Nonlinear evolution equations in Banach spaces. Isr. J. Math. 11, 57–94 (1972)
    • 12. Ferreira, F., Leu¸stean, L., Pinto, P.: On the removal of weak compactness arguments in proof mining. Adv. Math. 354, 55 (2019)
    • 13. Ferreira, F., Oliva, P.: Bounded functional interpretation. Ann. Pure Appl. Logic 135, 73–112 (2005)
    • 14. Gerhardy, P., Kohlenbach, U.: Strongly uniform bounds from semi-constructive proofs. Ann. Pure Appl. Logic 141, 89–107 (2006)
    • 15. Gerhardy, P., Kohlenbach, U.: General logical metatheorems for functional analysis. Trans. Am. Math. Soc. 360, 2615–2660 (2008)
    • 16. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)
    • 17. Günzel, D., Kohlenbach, U.: Logical metatheorems for abstract spaces axiomatized in positive bounded logic. Adv. Math. 290, 503–551 (2016)
    • 18. Howard, W.A.: Hereditarily majorizable functionals of finite type. In Troelstra, A.S, editor, Metamathematical Investigation of Intuitionistic...
    • 19. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 19(4), 508–520 (1967)
    • 20. Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale und ihre Anwendungen bei der Extraktion von Schranken aus inkonstruktiven...
    • 21. Kohlenbach, U.: Effective bounds from ineffective proofs in analysis: an application of functional interpretation and majorization. J....
    • 22. Kohlenbach, U.: Analysing proofs in analysis. In Hodges, W., Hyland, M., Steinhorn, C., Truss, J., editors, Logic: from Foundations to...
    • 23. Kohlenbach, U.: Relative constructivity. J. Symb. Logic 63, 1218–1238 (1998)
    • 24. Kohlenbach, U.: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 357(1), 89–128 (2005)
    • 25. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer Monographs in Mathematics. Springer-Verlag,...
    • 26. Kohlenbach, U.: Proof-theoretic Methods in Nonlinear Analysis. In Sirakov, B., Ney de Souza, P., Viana, M., (ed.) Proc. ICM 2018, vol....
    • 27. Kohlenbach, U.: Local formalizations in nonlinear analysis and related areas and proof-theoretic tameness. In Weingartner, P., Leeb, H.P.,...
    • 28. Kohlenbach, U., Koutsoukou-Argyraki, A.: Rates of convergence and metastability for abstract Cauchy problems generated by accretive operators....
    • 29. Kohlenbach, U., Koutsoukou-Argyraki, A.: Effective asymptotic regularity for one-parameter nonexpansive semigroups. J. Math. Anal. Appl....
    • 30. Kohlenbach, U., Leu¸stean, L.: On the computational content of convergence proofs via Banach limits. Philos. Trans. R. Soc. A 370(1971),...
    • 31. Kohlenbach, U., Nicolae, A.: A proof-theoretic bound extraction theorem for CAT(κ)-spaces. Stud. Log. 105, 611–624 (2017)
    • 32. Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in mathematics. Proc. Steklov Inst. Math. 242, 136–164 (2003)
    • 33. Kohlenbach, U., Pischke, N.: Proof theory and non-smooth analysis. Philos. Trans. R. Soc. A 381(2248), 21 (2023)
    • 34. Komura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19(4), 493–507 (1967)
    • 35. Kreisel, G.: On the interpretation of non-finitist proofs-Part I. J. Symb. Log. 16(4), 241–267 (1951)
    • 36. Kreisel, G.: On the interpretation of non-finitist proofs-Part II. Interpretation of number theory. Applications J. Symb. Log. 17(1),...
    • 37. Kuroda, S.: Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Math. J. 2, 35–47 (1951)
    • 38. Leu¸stean, L.: Proof mining in R-trees and hyperbolic spaces. Electron. Notes Theor. Comput. Sci. 165, 95–106 (2006)
    • 39. Leu¸stean, L.: An application of proof mining to nonlinear iterations. Ann. Pure Appl. Logic 165(9), 1484–1500 (2014)
    • 40. Macintyre, A.: The mathematical significance of proof theory. Philos. Trans. R. Soc. A 363(1835), 2419–2435 (2005)
    • 41. Macintyre, A.: The impact of Gödel’s incompleteness theorems on mathematics. In Baaz, M., Papadimitriou, C.H., Putnam, H.W., Scott, D.S.,...
    • 42. Miyadera, I.: Some remarks on semigroups of nonlinear operators. Tohoku Math. J. 23, 245–258 (1971)
    • 43. Miyadera, I.: Nonlinear Semigroups. Translations of Mathematical Monographs. AMS, Providence (1992)
    • 44. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces....
    • 45. Pavel, N.H.: Nonlinear Evolution Operators and Semigroups: Applications to Partial Differential Equations. Lecture Notes in Mathematics....
    • 46. Pazy, A.: Asymptotic behavior of contractions in Hilbert space. Isr. J. Math. 9(2), 235–240 (1971)
    • 47. Pazy, A.: Strong convergence of semigroups on nonlinear contractions in Hilbert space. J. Math. Ana. Appl. 34, 1–35 (1978)
    • 48. Pinto, P., Pischke, N.: On computational properties of Cauchy problems generated by accretive operators. Doc. Math. 28(5), 1235–1274 (2023)
    • 49. Pischke, N.: Logical metatheorems for accretive and (generalized) monotone set-valued operators. J. Math. Logic 24(2), 59 (2024)
    • 50. Pischke, N.: On logical aspects of extensionality and continuity for set-valued operators with applications to nonlinear analysis. (2024)....
    • 51. Pischke, N.: Proof mining for the dual of a Banach space with extensions for uniformly Fréchet differentiable functions. Trans. Am. Math....
    • 52. Pischke, N.: Proof-Theoretical Aspects of Nonlinear and Set-Valued Analysis. PhD thesis, TU Darmstadt (2024). Thesis available at https://doi.org/10.26083/tuprints-00026584
    • 53. Pischke, N.: Rates of convergence for the asymptotic behavior of second-order Cauchy problems. J. Math. Anal. Appl. 533(2), 15 (2024)
    • 54. Plant, A.T.: The differentiability of nonlinear semigroups in uniformly convex spaces. Isr. J. Math. 38(3), 257–268 (1981)
    • 55. Poffald, E.I., Reich, S.: An incomplete Cauchy problem. J. Math. Anal. Appl. 113(2), 514–543 (1986)
    • 56. P˘aunescu, L., Sipo¸s, A.: A proof-theoretic metatheorem for tracial von Neumann algebras. Math. Logic Q. 69(1), 63–76 (2023)
    • 57. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75(1), 287–292 (1980)
    • 58. Reich, S.: On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. J. Math. Anal. Appl. 79, 113–126 (1981)
    • 59. Sipo¸s, A.: Proof mining in Lp spaces. J. Symb. Logic 84(4), 1612–1629 (2019)
    • 60. Tao, T.: Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Theory Dyn. Syst. 28, 657–688 (2008)
    • 61. Tao, T.: Structure and Randomness: Pages from Year One of a Mathematical Blog, chapter Soft analysis, hard analysis, and the finite convergence...
    • 62. Xu, H.-K.: Strong asymptotic behavior of almost-orbits of nonlinear semigroups. Nonlinear Anal. Theory Methods Appl. 46(1), 135–151 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno