Ir al contenido

Documat


On the rate of convergence of continued fraction statistics of random rationals

  • Ofir David [2] ; Taehyeong Kim [1] ; Ron Mor [1] ; Uri Shapira [2]
    1. [1] Hebrew University of Jerusalem

      Hebrew University of Jerusalem

      Israel

    2. [2] Department of Mathematics, Technion, Haifa, Israel
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01026-9
  • Enlaces
  • Resumen
    • We show that the statistics of the continued fraction expansion of a randomly chosen rational in the unit interval, with a fixed large denominator q, approaches the Gauss-Kuzmin statistics with polynomial rate in q. This improves on previous results giving the convergence without rate. As an application of this effective rate of convergence, we show that the statistics of a randomly chosen rational in the unit interval, with a fixed large denominator q and prime numerator, also approaches the Gauss-Kuzmin statistics. Our results are obtained as applications of improved non-escape of mass and equidistribution statements for the geodesic flow on the space SL2(R)/SL2(Z).

  • Referencias bibliográficas
    • Adler, R., Keane, M., Smorodinsky, M.: A construction of a normal number for the continued fraction transformation. J. Number Theory 13(1),...
    • Aka, M., Shapira, U.: On the evolution of continued fractions in a fixed quadratic field. J. Anal. Math. 134(1), 335–397 (2018)
    • Bykovskii, V.A.: An estimate for the dispersion of lengths of finite continued fractions. Fundam. Prikl. Mat. 11(6), 15–26 (2005)
    • Baladi, V., Vallée, B.: Euclidean algorithms are Gaussian. J. Number Theory 110(2), 331–386 (2005)
    • John, D.: Dixon, The number of steps in the Euclidean algorithm. J. Number Theory 2, 414–422 (1970)
    • David, O., Shapira, U.: Equidistribution of divergent orbits and continued fraction expansion of rationals. J. Lond. Math. Soc. 98(1), 149–176...
    • Einsiedler, M., Kadyrov, S.: Entropy and escape of mass for SL3(Z)\SL3(R). Israel J. Math. 190, 253–288 (2012)
    • Einsiedler, M., Kadyrov, S., Pohl, A.: Escape of mass and entropy for diagonal flows in real rank one situations. Israel J. Math. 210(1),...
    • Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: The distribution of closed geodesics on the modular surface, and Duke’s theorem....
    • Einsiedler, M., Ward, T.: Ergodic theory with a view towards number theory. Graduate Texts in Mathematics. London Ltd., London, Springer-Verlag...
    • Heilbronn, H.: On the average length of a class of finite continued fractions, Number Theory and Analysis (Papers in Honor of Edmund Landau),...
    • Hensley, D.: The distribution of badly approximable numbers and continuants with bounded digits. Théorie des nombres (1989). https://doi.org/10.1515/9783110852790.371
    • Hensley, D.: The distribution of badly approximable rationals and continuants with bounded digits. II. J. Number Theory 34(3), 293–334 (1990)
    • Hensley, D.: The number of steps in the euclidean algorithm. J. Number Theory 49(2), 142–182 (1994)
    • Jarník, V.: Zur metrischen Theorie der diophantischen Approximationen. Prace MatematycznoFizyczne 36(1), 91–106 (1929)
    • Kadyrov, S., Kleinbock, D., Lindenstrauss, E., Margulis, G.A.: Singular systems of linear forms and non-escape of mass in the space of lattices....
    • Mor, R.: Excursions to the cusps for geometrically finite hyperbolic orbifolds and equidistribution of closed geodesics in regular covers....
    • Mor, R.: Bounding entropy for one-parameter diagonal flows on SLd (R)/SLd (Z) using linear functionals, J. Eur. Math. Soc. (2025). https://doi.org/10.4171/jems/1592
    • Porter, J.W.: On a theorem of Heilbronn. Mathematika 22(1), 20–28 (1975)
    • Ustinov, A.V.: On the number of solutions of the congruence x y ≡ l (mod q) under the graph of a twice continuously differentiable function....
    • Vandehey, J.: New normality constructions for continued fraction expansions. J. Number Theory 166, 424–451 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno