Ir al contenido

Documat


Khovanov homology via 1-tangle diagrams in the annulus

  • David Boozer [1]
    1. [1] Department of Mathematics, Indiana University, Bloomington, Indiana, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01019-8
  • Enlaces
  • Resumen
    • We show that the reduced Khovanov homology of an oriented link L in S3 can be expressed as the homology of a chain complex constructed from a description of L as the closure of a 1-tangle diagram T in the annulus. Our chain complex is constructed using a cube of resolutions of T in a manner similar to ordinary Khovanov homology, but it is typically smaller than the ordinary Khovanov chain complex and has several unusual features, such aslong differentials corresponding to pairs of successive saddles in the cube of resolutions. Our chain complex carries a natural filtration, which we use to construct a spectral sequence that converges to reduced Khovanov homology. Our results are part of a larger program to construct an analog of Khovanov homology for links in lens spaces by generalizing a symplectic interpretation of Khovanov homology due to Hedden, Herald, Hogancamp, and Kirk, and our chain complex was predicted by this program for the case when the lens space is S3.

  • Referencias bibliográficas
    • Asaeda, M., Przytycki, J.H., Sikora, A.S.: Categorification of the Kauffman bracket skein module of I-bundles over surfaces. Algebr. Geom....
    • Asaeda, M., Przytycki, J.H., Sikora, A.S.: A categorification of the skein module of tangles. Contemp. Math. 416, 1–8 (2006)
    • Boozer, D.: Khovanov homology and the Fukaya category of the traceless character variety for the twice-punctured torus. arXiv preprint arXiv:2210.16452,...
    • Gabrovšek, B.: The categorification of the Kauffman bracket skein module of RP3. Bull. Austral. Math. Soc. 88(3), 407–422 (2013)
    • Hedden, M., Herald, C., Kirk, P.: The pillowcase and perturbations of traceless representations of knot groups. Geom. Topol. 18(1), 211–287...
    • Hedden, M., Herald, C., Kirk, P.: The pillowcase and traceless representations of knot groups II: a Lagrangian-Floer theory in the pillowcase....
    • Hedden, M., Herald, C.M., Hogancamp, M., Kirk, P.: The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology....
    • Jones, V.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. 12, 103–111 (1985)
    • Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000)
    • Kronheimer, P., Mrowka, T.: Khovanov homology is an unknot-detector. Publ. Math. Inst. Hautes Études Sci. 113, 97–208 (2011)
    • Kronheimer, P., Mrowka, T.: Knot homology groups from instantons. J. Topol. 4, 835–918 (2011)
    • 12. Kronheimer, P., Mrowka, T.: Filtrations on instanton homology. Quantum Topol. 5, 61–97 (2014)
    • 13. Rozansky, L.: A categorification of the stable SU(2) Witten–Reshetikhin–Turaev invariant of links in S2 × S1. arXiv preprint arXiv:1011.1958,...
    • 14. Willis, M.: Khovanov homology for links in #r(S2 × S1). Michigan Math. J. 70(4), 675–748 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno