Ir al contenido

Documat


Duality structures for representation categories of vertex operator algebras and the Feigin–Fuchs boson

  • Robert Allen [1] ; Simon Lentner [2] ; Christoph Schweigert [2] ; Simon Wood [1]
    1. [1] Cardiff University

      Cardiff University

      Castle, Reino Unido

    2. [2] Algebra and Number Theory, University Hamburg, Hamburg, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01032-x
  • Enlaces
  • Resumen
    • Huang, Lepowsky and Zhang developed a representation theory for vertex operator algebras that endows suitably chosen module categories with the structures of braided monoidal categories. Included in the theory is a functor which assigns to discretely strongly graded modules a contragredient module, obtained as a gradewise dual. In this paper, we show that this gradewise dual endows the representation category with the structure of a ribbon Grothendieck-Verdier category. This duality structure is more general than that of a rigid monoidal category; in contrast to rigidity, it naturally accommodates the fact that a vertex operator algebra and its gradewise dual need not be isomorphic as modules and that the tensor product of modules over vertex operator algebras need not be exact. We develop criteria which allow the detection of ribbon Grothendieck-Verdier equivalences and use them to explore ribbon Grothendieck-Verdier structures in the example of the rankn Heisenberg vertex operator algebra or chiral free boson on a not necessarily full rank even lattice with arbitrary choice of conformal vector. We show that these categories are equivalent, as ribbon Grothendieck-Verdier categories, to certain categories of graded vector spaces and categories of modules over a certain quasi-Hopf algebra.

  • Referencias bibliográficas
    • Huang, Y-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor product theory I–VIII. arXiv:1012.4193 [math.QA], arXiv:1012.4196 [math.QA], arXiv:1012.4197...
    • Feigin, B., Gainutdinov, A., Semikhatov, A., Tipunin, an I.Y: Logarithmic extensions of minimal models: characters and modular transformations....
    • Allen, R., Wood, S.: Bosonic ghostbusting–the bosonic ghost vertex algebra admits a logarithmic module category with rigid fusion. Comm. Math....
    • Auger, J., Creutzig, T., Kanade, S., Rupert, M.: Braided tensor categories related to Bpvertex algebras. Comm. Math. Phys. 378, 219–260 (2020)....
    • Creutzig, T., Jiang, C., Orosz Hunziker, F., Ridout, D., Yang, J.: Tensor categories arising from the Virasoro algebra. Adv. Math. 380, 107601...
    • Creutzig, T., McRae, R., Yang, J.: On ribbon categories for singlet vertex algebras. Comm. Math. Phys. 387, 865–925 (2021). arXiv:2007.12735
    • Creutzig, T., McRae, R., Yang, J.: Tensor structure on the Kazhdan-Lusztig category for affine , (2020). gl(1|1), arXiv:2009.00818 [math.QA]...
    • Bruguières, A., Lack, S., Virelizier, A.: Hopf monads on monoidal categories. Adv. Math. 227, 745 (2011). arxiv:1003.1920
    • Day, B.J., Street, R.: Quantum categories, star autonomy, and quantum groupoids. Fields Institute Commun. 43, 187 (2004). arXiv:math/0301209
    • Allen, R.: Hopf algebroids and Grothendieck-Verdier duality, (2023). arXiv:2308.01029 [math.QA]
    • Boyarchenko, M., Drinfeld, V.: A duality formalism in the spirit of Grothendieck and Verdier. Quantum Topol. 4, 447–489 (2013). arXiv:1108.6020...
    • Manin, Y.: Grothendieck-Verdier duality patterns in quantum algebra. Izv. Math. 81, 818–826 (2017). arXiv:1701.01261 [math.QA]
    • Barr, M.: ∗-Autonomous Categories. Number 752 in Lecture Notes in Mathematics. Springer, (1979)
    • Müller, L., Woike, L.: Cyclic framed little disks algebras, Grothendieck-Verdier duality and handlebody group representations. Q. J. Math....
    • Gaberdiel, M., Runkel, I., Wood, S.: Fusion rules and boundary conditions in the c = 0 triplet model. J. Phys. A 42, 325403 (2009). arXiv:0905.0916...
    • Neeman, A.: Derived categories and Grothendieck duality, page 290–350. London Mathematical Society Lecture Note Series, Cambridge University...
    • Melliès, P-A.: Categorical semantics of linear logic. In: Interactive Models of Computation and Program Behaviour, Panoramas et Synthèses...
    • Adamović, D., Pedić, V.: On fusion rules and intertwining operators for the Weyl vertex algebra. J. Math. Phys. 60, 081701 (2019)
    • Feigin, B, Tipunin, I.Y.: Logarithmic CFTs connected with simple Lie algebras, (2010). arXiv:1002.5047 [math.QA]
    • Creutzig, T., Kanade, S., McRae, R.: Glueing vertex algebras. Adv. Math. 396, 108174 (2022). arXiv:1906.00119 [math.QA]
    • McRae, R.: On rationality for C2-cofinite vertex operator algebras, (2021). arXiv:2108.01898 [math.QA]
    • MacLane, S.: Cohomology theory of abelian groups. Proc. Internat. Congress Math. 2, 8–14 (1952)
    • Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)
    • Ridout, D.: 𝑠𝑙(2)−1/2sl(2)−1/2: A Case Study. Nucl. Phys. B 814, 485–521 (2009). arXiv:0810.3532 [hep-th]
    • Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models I. Nucl. Phys. B 865, 83–114 (2012). arXiv:1205.6513...
    • Creutzig, T., Milas, A.: False theta functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014)
    • Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013). arXiv:1306.4388...
    • Creutzig, T., Ridout, D.: Logarithmic conformal field theory: beyond an introduction. J. Phys. A 46, 494006 (2013). arXiv:1303.0847 [hep-th]
    • Ridout, D., Wood, S.: The Verlinde formula in logarithmic CFT. J. Phys. Conf. Ser. 597, 012065 (2015). arXiv:1409.0670 [hep-th]
    • Creutzig, T., Milas, A., Wood, S.: On regularised quantum dimensions of the singlet vertex operator algebra and false theta functions. Int....
    • Ridout, D., Wood, S.: Bosonic Ghosts at 𝑐=2c=2 as a Logarithmic CFT. Lett. Math. Phys. 105, 279–307 (2015). arXiv:1408.4185...
    • Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Number volume 205 in Mathematical Surveys and Monographs. American Mathematical...
    • Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics. Birkhäuser, Boston (1993)
    • Fuchs, J., Schaumann, G., Schweigert, C., Wood, S.: Grothendieck-Verdier duality in categories of bimodules and weak module functors, (2023)....
    • Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions, volume 295 of Mem. Amer. Math. Soc. American...
    • Kanade, S., Ridout, D.: NGK and HLZ: Fusion for Physicists and Mathematicians, pages 135–181. Springer, Cham, (2019). arXiv:1812.10713 [math-ph]
    • Creutzig, T., McRae, R., Yang, J.: Direct limit completions of vertex tensor categories. Commun. Contemp. Math. 24, 2150033 (2022). arXiv:2006.09711
    • Frenkel, E, Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, volume 88 of Mathematical Surveys and Monographs. American Mathematical Society,...
    • Huang, Y-Z.: On the applicability of logarithmic tensor category theory, (2017). arXiv:1702.00133 [math.QA]
    • Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–1054 (2008). arXiv: math/0406291
    • McRae, R., Yang, J.: The non-semisimple Kazhdan-Lusztig category for affine 𝑠𝑙2sl 2at admissible levels, (2023). arXiv:2312.01088...
    • Wood, S.: Admissible level 𝑜𝑠𝑝(1∣2)osp(1∣2) minimal models and their relaxed highest weight modules. Transf. Groups...
    • Zetzsche, S.: Generalised duality theory for monoidal categories and applications. M.Sc. mathematics thesis, University of Hamburg, (2018)....
    • Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Number 134 in Pure and Applied Mathematics. AIP Conf. Prod.,...
    • Li, H., Wang, Q.: On vertex algebras and their modules associated with even lattices. J. Pure Appl. Algebra 213, 1097–1111 (2009)
    • Lepowsky, J., Wilson, R.L.: A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. Math. 45, 21–72 (1982)
    • Tuite, M., Zuevsky, A.: A generalized vertex operator algebra for Heisenberg intertwiners. J. Pure Appl. Algebra 216, 1442–1453 (2012)
    • Ohtsuki, T.: Quantum Invariants: A Study of Knots, 3-Manifolds, and Their Sets (Series on Knots and Everything, Band 29). World Scientific...
    • Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of 𝑠𝑙(2)sl(2). J. Pure Appl. Algebra...
    • Schellekens, A.N., Yankielowicz, S.: Simple currents, modular invariants and fixed points. Int. J. Mod. Phys. 15, 2903–2952 (1990)
    • Auger, J., Rupert, M.: On infinite order simple current extensions of vertex operator algebras. In Vertex algebras and geometry, volume 711...
    • Kirillov, A., Ostrik, V.: On q-analog of McKay correspondence and ADE classification of 𝑠𝑙(2)sl(2) conformal field theories....
    • Huang, Y-Z., Kirillov, A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Comm. Math. Phys., 337(3),...
    • Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators: III: simple currents. Nucl. Phys. B 694, 277–353 (2004). arXiv:hep-th/0403157
    • Pareigis, B.: On braiding and dyslexia. J. Algebra 171, 413–425 (1995)
    • Takeuchi, M.: Relative Hopf modules-equivalences and freeness criteria. J. Algebra 60(2), 452–471 (1979)
    • Skryabin, S.: Projectivity and freeness over comodule algebras. Trans. AMS 359, 2597–2623 (2007)
    • Creutzig, T., Gainutdinov, A., Runkel, I.: A quasi-Hopf algebra for the triplet vertex operator algebra. Commun. Contemp. Math. 22, 1950024...
    • Negron, C.: Log-modular quantum groups at even roots of unity and the quantum Frobenius I. Comm. Math. Phys. 382, 773–814 (2021). arXiv:1812.02277
    • Creutzig, T., Rupert, M.: Uprolling unrolled quantum groups. Commun. Contemp. Math. 24(04), 2150023 (2022). arXiv:2005.12445
    • Creutzig, T., Lentner, S., Rupert, M.: An algebraic theory for logarithmic Kazhdan-Lusztig correspondences. arXiv:2306.11492 [math.QA]

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno