Ir al contenido

Documat


Hikita-Nakajima conjecture for the Gieseker variety

  • Vasily Krylov [1] ; Pavel Shlykov [2]
    1. [1] Harvard University

      Harvard University

      City of Cambridge, Estados Unidos

    2. [2] University of Glasgow

      University of Glasgow

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-025-01028-7
  • Enlaces
  • Referencias bibliográficas
    • Atiyah, M.F., Bott, R.: The moment map and equivariant Cohomology. Topology 23(1), 1–28 (1984)
    • Beauville, A.: Symplectic singularities. Invent. Math. 139, 541–549 (2000)
    • Bonnafé, C., Shan, P.: On the Cohomology of Calogero–Moser Spaces, International Mathematics Research Notices. (2018) https://doi.org/10.1093/imrn/rny036
    • Braden, T., Licata, A., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions II: category O and symplectic duality....
    • Braden, T., Licata, A., Phan, C., Proudfoot, N., Webster, B.: Localization algebras and deformations of Koszul algebras. Sel. Math. New Ser....
    • Braverman, A., Finkelberg, M., Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional N = 4 gauge theories,...
    • Braverman, A., Etingof, P., Finkelberg, M.: Cyclotomic double affine Hecke algebras. Annales Scientifiques De L Ecole Normale Superieure 53,...
    • Brundan, J.: Centers of degenerate cyclotomic Hecke algebras and parabolic category O. An Electron. J. Am. Mathe. Soc. 12, 236–259 (2008)
    • Brundan, J., Kleshchev, A.: Schur-Weyl duality for higher levels. Selecta Mathematica 14, 1–57 (2006)
    • Chen, X., Weiqiang, H., Sirui, Y.: Quantization of the minimal nilpotent orbits and the equivariant Hikita conjecture (2023), available at...
    • Drinfeld, V.: On algebraic spaces with an action of Gm (2013), available at arXiv:1308.2604
    • Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147,...
    • Fogarty, J.: Fixed point schemes. Am. J. Math. 95(1), 35–51 (1973)
    • Ginzburg, V., Kaledin, D.: Poisson deformations of symplectic quotient singularities. Adv. Math. 186, 1–57 (2002)
    • Gordon, I., Verma, B.: modules for rational Cherednik algebras, Bulletin of the London Mathematical Society 35 (2002)
    • Griffeth, S.: Unitary representations of cyclotomic rational Cherednik algebras. J. Algebra 512, 310–356 (2018)
    • Hatano, K.: The cohomology of framed moduli spaces and the coordinate ring of torus fixed points of quotient singularities (2021), available...
    • Hausel, T., Proudfoot, N.: Abelianization for hyperkähler quotients. Topology 44(1), 231–248 (2005)
    • Hikita, T.: An algebra-geometric realization of the cohomology ring of Hilbert scheme of points in the affine plane. Int. Math. Res. Not....
    • Hilburn, J., Kamnitzer, J., Weekes, A.: BFN Springer Theory. Commun. Math. Phys. 402(1), 765–832 (2023)
    • Hoang, D.K., Krylov, V., Matvieievskyi, D.: Around Hikita-Nakajima conjecture for nilpotent orbits and parabolic Slodowy varieties (2024),...
    • Iversen, B.: A fixed point formula for action of tori on algebraic varieties. Invent. Math. 16(3), 229–236 (1972)
    • Kamnitzer, J., Tingley, P., Webster, B., Weekes, A., Yacobi, O.: Highest weights for truncated shifted Yangians and product monomial crystals....
    • Kamnitzer, J., Tingley, P., Webster, B., Weekes, A., Yacobi, O.: On category O for affine Grassmannian slices and categorified tensor products....
    • Kamnitzer, J., McBreen, M., Proudfoot, N.: The quantum Hikita conjecture, Adv. Math. 390 (2021)
    • Kamnitzer, J.: Symplectic resolutions, symplectic duality, and Coulomb branches. Bull. Lond. Math. Soc. 54(5), 1515–1551 (2022)
    • Kodera, R., Nakajima, H.: Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras. Proc. Symposia...
    • Lusztig, G.: Cuspidal local systems and graded Hecke algebras, I. Inst. Hautes Études Sci. Publ. Math. 67, 145–202 (1988)
    • Martino, M.: Blocks of restricted rational Cherednik algebras for G(m, d, n), Journal of Algebra 397, no. Complete, 209-224 (English) (2014)
    • McGerty, K., Nevins, T.: Kirwan surjectivity for quiver varieties. Invent. Math. 212(1), 161–187 (2018)
    • Gwendolen, E.: Murphy, The idempotents of the symmetric group and Nakayama’s conjecture. J. Algebra 81(1), 258–265 (1983)
    • Nakajima, H.: Lectures on Hilbert schemes of points on surfaces, American Mathematical Soc., (1999)
    • Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14, 145–238 (2001)
    • Nakajima, H., Yoshioka, K.: Lectures on Instanton Counting, Algebraic Structures and Moduli Spaces 38 (2003)
    • Nakajima, H., Takayama, Y.: Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A. Sel. Math. New Ser. 23,...
    • Namikawa, Y.: Flops and Poisson Deformations of Symplectic Varieties. Publ. Res. Inst. Math. Sci. 44(2), 259–314 (2008)
    • Namikawa, Y.: Poisson deformations of affine symplectic varieties II. Kyoto J. Math. 50(4), 727–752 (2010)
    • Przezdziecki, Tomasz: The combinatorics of C*-fixed points in generalized Calogero-Moser spaces and Hilbert schemes, Journal of Algebra 556...
    • Setiabrata, L.: Hikita surjectivity for N ///T (2024), available at arXiv:2410.16217
    • Shan, P., Varagnolo, M., Vasserot, E.: On the center of quiver Hecke algebras. Duke Math. J. 166(6), 1005–1101 (2017)
    • Shlykov, P.: Hikita conjecture for the minimal nilpotent orbit (2019), available at arXiv:1903.12205
    • Vasserot, E.: Sur l’anneau de cohomologie du schéma de Hilbert de C2. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 332(1),...
    • Wang, W.: Hilbert schemes, wreath products, and the McKay correspondence (2000), available at arXiv:math/9912104
    • Webster, B.: Rouquier’s conjecture and diagrammatic algebra, Forum of Mathematics, Sigma 5 (2013)
    • Webster, B.: Koszul duality between Higgs and Coulomb categories O (2016), available at arXiv:1611.06541
    • Webster, B.: Representation theory of the cyclotomic Cherednik algebra via the Dunkl–Opdam subalgebra. New York J. Math. 25, 1017–1047 (2019)
    • Webster, B.: Coherent sheaves and quantum Coulomb branches II: quiver gauge theories and knot homology (2022), available at arXiv:2211.02099
    • Weekes, A.: Generators for Coulomb branches of quiver gauge theories (2019), available at arXiv:1903.07734
    • Weekes, A.: Quiver gauge theories and symplectic singularities. Adv. Math. 396, 108185 (2022)
    • Wilson, G.: Collisions of Calogero-Moser particles and an adelic Grassmannian (With an Appendix by I.G. Macdonald). Invent. Math. 133, 1–41...
    • Zhou, Z.: Virtual Coulomb branch and vertex functions. Duke Math. J. 172(17), 3359–3428 (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno