Ir al contenido

Documat


Una nueva prueba para el parámetro de diferenciación fraccional

  • ELKIN CASTAÑO [1] ; KAROLL GÓMEZ [1] ; SANTIAGO GALLÓN [1]
    1. [1] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 31, Nº. 1, 2008, págs. 67-84
  • Idioma: español
  • Títulos paralelos:
    • A new test for the fractional differencing parameter
  • Enlaces
  • Resumen
    • español

      Este documento presenta una nueva prueba para el parámetro de diferenciación fraccional de un modelo ARFIMA, basada en una aproximación autorregresiva de su componente a corto plazo. El comportamiento de la prueba se estudia por medio de experimentos Monte Carlo en una distribución normal, y se compara con el comportamiento de algunas de las pruebas más utilizadas. Para los casos estudiados, se concluye que la nueva prueba tiene generalmente potencias superiores, conservando un tamaño adecuado. A partir de la estimación del parámetro de diferenciación fraccional usando el modelo aproximado, es posible identificar el modelo correcto para la componente a corto plazo, lo cual permite mejorar la inferencia sobre dicho parámetro. Una ventaja adicional del procedimiento propuesto es que permite probar la existencia de larga memoria en presencia de errores dependientes, como en el caso de modelos de volatilidad de la familia ARCH. Se ilustra su aplicación en un procedimiento de identificación y estimación de un modelo ARFIMA--ARCH usando datos simulados.

    • English

      This paper presents a new test for the fractional differencing parameter of an ARFIMA model, based on an autoregressive approximation of its short-range component. The tests behavior is studied using Monte Carlo simulations under a normal distribution and is compared to results found for others well--known long memory tests. In general, the results show that the new test has a superior power while maintaining an adequate size of the test. From the estimation of the fractional differencing parameter using the approximate model, it is possible to identify the correct model for the short--term component, which allows improving the inference on the above mentioned parameter. An additional advantage of the proposed procedure is the possibility of testing long memory in the presence of dependent errors such as in the volatility models of ARCH family. The identification and estimation procedure is applied to simulated data from an ARFIMA--ARCH model

  • Referencias bibliográficas
    • Baillie, R.. (1996). `Long Memory Processes and Fractional Integration in Econometrics´. Journal of Econometrics. 73. 5-59
    • Beran, J.. (1994). Statistics for Long-Memory Processes. Chapman & Hall/CRC. New York.
    • Bhardwaj, G.,Swanson, N. R.. (2004). `An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial...
    • Bos, C. S.,P. H. Franses,Ooms, M.. (2002). `Inflation, Forecast Intervals and Long Memory Regression Models´. International Journal of...
    • Brockwell, P. J.,Davies, R.. (2006). Time Series: Theory and Methods. Springer-Verlag. New York.
    • Cheung, Y. W.. (1993). `Long Memory in Foreign-Exchanges Rates´. Journal of Business and Economic Statistics. 11. 93-101
    • Cheung, Y. W.,Lai, K.. (1995). `A Search of Long Memory in International Stock Market Returns´. Journal of International Money and Finance....
    • Chio, K.,Zivot, E.. (2007). `Long Memory and Structural Changes in the Forward Discount: An Empirical Investigation´. Journal of International...
    • Chow, K. V.,Denning, K. C.,Ferris, S.,Noronha, G.. (1995). `Long-Term and Short-Term Price Memory in the Stock Market´. Economics Letters....
    • Davidson, J.. (2007). `Time Series Modelling Version 4.24´.
    • Diebold, F.,Rudebush, G.. (1989). `Long Memory and Persistence in Aggregate Output´. Journal of Monetary Economics. 24. 189-209
    • Geweke, J.,Porter-Hudak, S.. (1983). `The Estimation and Application of Long-Memory Time Series Models´. Journal of Time Series Analysis....
    • Granger, C. W. J.. (1980). `Long Memory Relationships and the Aggregation of Dynamic Models´. Journal of Econometrics. 14. 227-238
    • Granger, C. W. J.,Joyeux, R.. (1980). `An Introduction to Long-Memory Time Series Models and Fractional Differencing´. Journal of Time...
    • Harris, D.,McCabe, B.,Leybourne, S.. (2008). `Testing for Long Memory´. Forthcoming in Econometric Theory. 24. 143-175
    • Hassler, U.,Wolters, J.. (1995). `Long Memory in Inflation Rates: International Evidence´. Journal of Business and Economic Statistics....
    • Hauser, M.. (1997). `Semiparametric and Nonparametric Testing for Long Memory: A Monte Carlo Study´. Empirical Economics. 22. 247-271
    • Hosking, J. R. M.. (1981). `Fractional Differencing´. Biometrika. 68. 165-176
    • Hurst, H. E.. (1951). `Long-Term Storage Capacity of Reservoirs´. Transactions of the American Society of Civil Engineers. 116. 770-799
    • Hyung, N.,Franses, P. H.. (2001). Structural Breaks and Long Memory in US Inflation Rates: Do They Matter for Forecasting?. Erasmus School...
    • Kwiatkowski, D.,Phillips, P. C. B.,Schmidt, P.,Shin, Y.. (1992). `Testing the Null Hypothesis of Stationarity against the Alternative...
    • Lee, D.,Schmidt, P.. (1996). `On the Power of the KPSS Test of Stationarity against Fractionally Integrated Alternatives´. Journal of...
    • Lobato, I. N.,Robinson, P. M.. (1998). `A Nonparametric Test for I(0)´. Review of Economic Studies. 65. 475-495
    • Lobato, I.,Robinson, P. M.. (1996). `Averaged Periodogram Estimation of Long Memory´. Journal of Econometrics. 73. 303-324
    • Mandelbrot, B.. (1962). `Sur certains prix spéculatifs: faits empiriques et modèle basé sur les processus stables additifs de Paul Lévy´....
    • Newey, W.,West, K.. (1987). `A Simple, Positive Semi-Definite, Heteroscedasticity and Autocorrelation Consistent Covariance Matrix´. Econometrica....
    • Robinson, P. M.. (1994). `Semiparametric Analysis of Long-Memory Time Series´. Annals of Statistics. 22. 515-539
    • Robinson, P.. (2003). Time Series with Long Memory. Oxford University Press. London.
    • Said, S.,Dickey, D.. (1984). `Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order´. Biometrika. 71. 599-607
    • Schwert, G. W.. (1989). `Tests for Unit Roots: A Monte Carlo Investigation´. Journal of Business and Economics Statistics. 7. 147-159
    • Soofi, A.,Wang, S.,Zhang, Y.. (2006). `Testing for Long Memory in the Asian Foreign Exchange Rates´. Journal of Systems Science and Complexity....
    • Sowell, F.. (1992). `Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models´. Journal of Econometrics....
    • Stock, J.,Watson, M.. (2002). `Macroeconomic Forecasting Using Diffusion Indexes´. Journal of Business and Economic Statistics. 20. 147-162
    • Tanaka, K.. (1999). `The Non-stationary Fractional Unit Root´. Econometric Theory. 15. 549-582
    • Tschernig, R.. (1994). `Long Memory in Foreign Exchange Rates Revisited´. Institute of Statistics and Econometrics.
    • Velasco, C.. (1999). `Gaussian Semiparametric Estimation of Non-stationary Time Series´. Journal of Time Series Analysis. 20. 87-127
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno