Ir al contenido

Documat


Optimality criteria for models with random effects

  • TISHA HOOKS [1] ; DAVID MARX [2] ; STEPHEN KACHMAN [2] ; JEFFREY PEDERSEN [2]
    1. [1] Winona State University

      Winona State University

      City of Winona, Estados Unidos

    2. [2] University of Nebraska System

      University of Nebraska System

      Estados Unidos

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 32, Nº. 1, 2009, págs. 17-31
  • Idioma: inglés
  • Títulos paralelos:
    • Criterios de optimalidad para los modelos con efectos aleatorios
  • Enlaces
  • Resumen
    • español

      En el contexto de modelos lineales, los criterios de optimalidad se cons- truyen para los modelos que incluyen efectos aleatorios. Tradicionalmente los criterios basados en la información asumen que todos los efectos en el modelo se consideran fijos. Cuando los parámetros, tratamientos o molestias son considerados efectos aleatorios, un criterio adecuado de optimalidad se puede desarrollar en las mismas condiciones. En este trabajo se introduce ese criterio, que permite la inclusión en el modelo de parámetros que representan molestias fijas o al azar, además de una estructura general de covarianza. También, se presenta una fórmula general para la cual en todos los casos publicados anteriormente, los criterios de optimalidad son casos especiales.

    • English

      In the context of linear models, an optimality criterion is developed for models that include random effects. Traditional information-based criteria are premised on all model effects being regarded as fixed. When treatments and/or nuisance parameters are assumed to be random effects, an appropriate optimality criterion can be developed under the same conditions. This paper introduces such a criterion, and this criterion also allows for the inclusion of fixed and/or random nuisance parameters in the model and for the presence of a general covariance structure. Also, a general formula is presented for which all previously published optimality criteria are special cases.

  • Referencias bibliográficas
    • Atkinson, A. C.,Donev, A. N.. (1992). Optimum Experimental Designs. Oxford University Press. New York.
    • Cook, R. D.,Nachtsheim, C. J.. (1980). `A Comparison of Algorithms for Constructing Exact D-optimal Designs´. Technometrics. 22.
    • Cressie, N. A. C.. (1993). Statistics for Spatial Data. John Wiley & Sons, Inc.. New York.
    • Dette, H.. (1995). `Designing of Experiments with Respect to ``Standardized'' Optimality Criteria´. Journal of the Royal...
    • Dette, H.,O'Brien, T.. (1999). `Optimality Criteria for Regression Models Based on Predicted Variance´. Biometrika. 86. 93-106
    • Draper, N. R.,Smith, H.. (1998). Applied Regression Analysis. John Wiley & Sons, Inc.. New York.
    • Dykstra, O. J.. (1971). `The Augmentation of Experimental Data to Maximize |X' X|´. Technometrics. 13. 682-688
    • Fedorov, V. V.. (1972). Theory of Optimal Experiments. Academic Press. New York.
    • Harville, D.. (1997). Matrix Algebra from a Statistician's Perspective. Springer-Verlag. New York.
    • Henderson, C. R.. (1975). `Best Linear Unbiased Estimation and Prediction Under a Selection Model´. Biometrics. 31. 423-447
    • Jacroux, M.. (2001). `Determination and Construction of A-optimal Designs for Comparing two Sets of Treatments´. The Indian Journal of...
    • Johnson, M. E.,Nachtsheim, C. J.. (1983). `Some Guidelines for Constructing Exact D-optimal Designs on Convex Design Spaces´. Technometrics....
    • Journel, A. G.,Huijbregts, C. J.. (1978). Mining Geostatistics. Academic Press. New York.
    • Kiefer, J.. (1958). `On the Non-randomized Optimality and Randomized Nonoptimality of Symmetrical Designs´. The Annals of Mathematical...
    • Kiefer, J.. (1974). `General Equivalence Theory for Optimum Designs (Approximate Theory)´. Annals of Statistics. 2. 849-879
    • Martin, R. J.. (1986). `On the Design of Experiments Under Spatial Correlation´. Biometrika. 73. 247-277
    • Marx, D.,Stroup, W.. (1992). Designed Experiments in the Presence of Spatial Correlation. `Proceedings of the 1992 Kansas State University...
    • Mitchell, T. J.. (1974). `An Algorithm for the Construction of D-optimal Experimental Designs´. Technometrics. 16. 203-210
    • Mitchell, T. J.,Miller, F. L. Jr. (1974). `An Algorithm for the Construction of D-optimal Experimental Designs´. Mathematlcs Division...
    • Müller, C. H.,Pazman, A.. (1998). `Applications of Necessary and Sufficient Conditions for Maximin Efficient Designs´. Metrika. 48. 1-19
    • Nguyen, N. K.,Miller, A. J.. (1998). `A Review of Exchange Algorithms for Constructing Discrete D-optimal Designs´. Metrika. 14. 489-498
    • Pazman, A.. (1978). `Computation of the Optimum Designs under Singular Information Matrices´. Annals of Statistics. 6. 465-467
    • (2007). SAS Institute Inc., SAS OnlineDoc 9.2. Cary, NC: SAS Institute Inc..
    • Schmelter, T.. (2007). `The Optimality of Single-group Designs for Certain Mixed Models´. Metrika. 65. 183-193
    • Schmelter, T.. (2007). `Considerations on Group-wise Identical Designs for Linear Mixed Models´. Journal of Statistical Planning and Inference....
    • Sebolai, B.,Pedersen, J. F.,Marx, D. B.,Boykin, D. L.. (2005). `Effect of Grid Size, Control Plot Density, Control Plot Arrangement, and...
    • Silvey, S. D.. (1978). `Optimal Design Measures with Singular Information Matrices´. Biometrika. 65. 553-559
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno