Ir al contenido

Documat


Efficient Object Tracking in Unlabeled Videos for Animal Behavior Studies Using Machine Learning

  • Matias M. Gonzalez [1] ; Elena Ortega-Jiménez [2] ; Ehsan Noshahri [1] ; Andrés Molares-Ulloa [1] ; Álvaro Rodríguez [1]
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    2. [2] Instituto de Ciencias Marinas de Andaluc´ıa (ICMAN-CSIC)
  • Localización: Proceedings XoveTIC 2024: Impulsando el talento científico / coord. por Manuel Lagos Rodríguez, Tirso Varela Rodeiro, Javier Pereira-Loureiro Árbol académico, Manuel Francisco González Penedo Árbol académico, 2024, págs. 105-110
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This work seeks to explore the development of a semi-supervised framework for animal tracking in controlled environments, leveraging principles from computer vision, machine learning, and deep learning. Initially conceptualized for single-object tracking, the approach will be generalized to accommodate multiple entities. Addressing the limitations posed by sparse labeled data, the method will involve user input to initialize object selection, enabling automated tracking across video sequences. Various techniques, including template matching, optical flow, and data augmentation, will be incorporated. The model's potential will be evaluated in scenarios involving complex movement patterns, with the aim of extracting relevant behavioral insights.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno