Ir al contenido

Documat


Demographic Background Prompting Does Not Affect Linguistic Features on LLM-Generated News Texts

  • Alberto Muñoz-Ortiz ; Carlos Gómez-Rodríguez [1] ; David Vilares [1] Árbol académico
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: Proceedings XoveTIC 2024: Impulsando el talento científico / coord. por Manuel Lagos Rodríguez, Tirso Varela Rodeiro, Javier Pereira-Loureiro Árbol académico, Manuel Francisco González Penedo Árbol académico, 2024, págs. 169-176
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We explored if implicit demographic information in prompts for large language models (LLMs) influences the linguistic features of generated text. Two LLMs were prompted to write news articles based on a title and summary, with prompts including demographic details like age, income, or nationality. The models were instructed not to explicitly reference these details. A total of 28,080 articles were generated by varying the demographics and topics. We calculated various linguistic metrics (e.g., sentence length, type-token ratio) and performed ANOVA, treating linguistic metrics as dependent variables and demographic categories as independent variables. Results indicate that demographic attributes do not significantly impact the linguistic metrics.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno