Ir al contenido

Documat


Using FastSAM for Creating Custom Automatic Segmentation Models for Medicine and Biology

  • Santiago Parames-Estévez [1] ; Diego Pérez-Dones [2] ; Ignacio Rego-Pérez [5] ; Natividad Oreiro-Villar [5] ; Francisco J. Blanco [3] ; Javier Roca Pardinas [4] Árbol académico ; Germán Gonzalez Pazó ; David G. Míguez [2] ; Alberto P. Munuzuri [1]
    1. [1] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    2. [2] Universidad Autónoma de Madrid

      Universidad Autónoma de Madrid

      Madrid, España

    3. [3] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

    4. [4] Universidade de Vigo

      Universidade de Vigo

      Vigo, España

    5. [5] Complexo Hospitalario Universitario de A Coruña
  • Localización: Proceedings XoveTIC 2024: Impulsando el talento científico / coord. por Manuel Lagos Rodríguez, Tirso Varela Rodeiro, Javier Pereira-Loureiro Árbol académico, Manuel Francisco González Penedo Árbol académico, 2024, págs. 237-243
  • Idioma: inglés
  • Enlaces
  • Resumen
    • FastSAM, a publicly available image segmentation model designed for general image segmentation, is turned into a highly adaptable and advanced segmentation tool that requires minimal training in two distinct scenarios. In the first case, we examine macroscopic X-ray images of the knee, in the second case, we focus on microscopic images of the zebra fish embryo retina, which have a significantly smaller spatial scale. We determine the minimum number of images needed to maintain state-of-the-art segmentation quality in each case. Finally, we evaluate the impact of image filtering and the unique considerations of segmenting 3D retinal volumes.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno