Ir al contenido

Documat


Coexistence of Limit Cycles and Homoclinic Loops in a Leslie-Gower Model with Allee Effect

  • Zhifei Guo [1] ; Dongping He [2]
    1. [1] Hefei University

      Hefei University

      China

    2. [2] Guangxi Normal University

      Guangxi Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • It was shown that a multiplicative Allee effect induces the rise of either a limit cycle or a homoclinic loop in a Leslie-Gower predator–prey model. In this work, we continue to explore its complicated dynamics caused by the Allee effect, i.e., the coexistence of multiple limit cycles and the homoclinic loops. Applying the resultant elimination method, we determine that the maximum multiplicity of a weak focus is four, and verify that four limit cycles bifurcating from degenerate Hopf bifurcation can coexist.

      Furthermore, we prove that a stable limit cycle can coexist with a homoclinic loop, which arise from a degenerate Bogdanov-Takens bifurcation of codimension three.

      Numerical simulations are also given to illustrate the two coexistence phenomena.

  • Referencias bibliográficas
    • 1. Aguirre, P.: A general class of predation models with multiplicative Allee effect. Nonlinear Dynam. 78, 629–648 (2014)
    • 2. Aguirre, P., González-Olivares, E., Sáez, E.: Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect. SIAM...
    • 3. Aguirre, P., González-Olivares, E., Sáez, E.: Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect. Nonlinear...
    • 4. Allee, W.C.: Animal aggregations: a study in general sociology. University of Chicago Press, Chicago (1931)
    • 5. Chen, X., Zhang, W.: Decomposition of algebraic sets and applications to weak centers of cubic systems. J. Comput. Appl. Math. 232, 565–581...
    • 6. Chow, S.-N., Li, C., Wang, D.: Normal forms and bifurcation of planar vector fields. Cambridge University Press, Cambridge (1994)
    • 7. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative theory of planar differential systems. Springer, Berlin (2006)
    • 8. Dumortier, F., Roussarie, R., Sotomayor, J.: Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent...
    • 9. Freedman, H. I.: Deterministic Mathematical Models in Population Ecology, Monogr. Textbooks Pure Appl. Math., vol. 57, Marcel Dekker, New...
    • 10. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants and multidimensional determinants. Birkhäuser, Boston (1994)
    • 11. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York (1983)
    • 12. Huang, J., Lu, M., Xiang, C., Zou, L.: Bifurcations of codimension 4 in a Leslie-type predator-prey model with Allee effects. J. Differ....
    • 13. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response....
    • 14. Hsu, S.-B., Huang, T.-W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)
    • 15. Kuznetsov, Y.A.: Elements of applied bifurcation theory, 4th edn. Springer, New York (2023)
    • 16. Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A.: Visualization of four normal size limit cycles in two-dimensional polynomial quadratic...
    • 17. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika...
    • 18. Li, C., Li, J., Ma, Z.: Codimension 3 B-T bifurcation in an epidemic model with a nonlinear incidence. Discrete Contin. Dyn. Syst. Ser....
    • 19. Li, Y., Xiao, D.: Bifurcations of a predator-prey system of Holling and Leslie types. Chaos, Solitons Fractals 34, 606–620 (2007)
    • 20. Lotka, A.J.: Elements of physical biology. William and Wilkins, Baltimore (1925)
    • 21. Lu, Z., He, B., Luo, Y., Pan, L.: An algorithm of real root isolation for polynomial systems with applications to the construction of...
    • 22. Martínez-Jeraldo, N., Aguirre, P.: Allee effect acting on the prey species in a Leslie-Gower predation model. Nonlinear Anal. Real World...
    • 23. May, R.M.: Stability and complexity in model ecosystem. Princeton University Press, New Jersey (1974)
    • 24. Murray, J.D.: Mathematical biology. I: introduction, 3rd edn. Springer, New York (2002)
    • 25. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472...
    • 26. Sáez, E., González-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59, 1867– 1878 (1999)
    • 27. Shang, Z., Qiao, Y.: Multiple bifurcations in a predator-prey system of modified Holling and Leslie type with double Allee effect and...
    • 28. Shang, Z., Qiao, Y.: Bogdanov-Takens bifurcation of codimensions 3 and 4 in a Holling and Leslie type predator-prey system with strong...
    • 29. Stephens, P.A., Sutherland, W.J.: Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405...
    • 30. Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the Allee effect? Oikos 87, 185–190 (1999)
    • 31. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558– 560 (1926)
    • 32. Zhang, J., Su, J.: Bifurcations in a predator-prey model of Leslie-type with simplified Holling type IV functional response. Internat....
    • 33. Zhang, J., Zhang, W.: Dynamics of a predator-prey model with hunting cooperation and Allee effects in predators. Internat. J. Bifur. Chaos...
    • 34. Zhang, Z.-F., Ding, T.-R., Huang, W.-Z., Dong, Z.-X.: Qualitative Theory of Differential Equations, Transl. Math. Monographs, vol. 101,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno