Ir al contenido

Documat


Dynamics of Kirchhoff Wave Equations Incorporating Energy Damping Effects

  • Pengyan Ding [1] ; Vando Narciso [2]
    1. [1] Henan University of Technology

      Henan University of Technology

      China

    2. [2] State University of Mato Grosso do Sul
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we consider the well-posedness and asymptotic behavior of a Kirchhofftype wave equation under the effects of strong damping whose intensity is given by a non-local degenerate coefficient that depends on the energy associated with the linear part of the system. This class of dissipations is connected with energy damping models proposed by Balakrishnan (A theory of nonlinear damping in flexible structures. Stabilization of flexible structures, 1988) and Balakrishnan-Taylor (Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989). In our main result, we establish that for each parameter κ associated with the coefficient of the potential part of the Kirchhoff term, the problem has a global attractor Aκ .

      Moreover, we prove that the family of global attractors {Aκ } is upper semi-continuous at κ.

  • Referencias bibliográficas
    • 1. Aloui, F., Hassen, I.B., Haraux, A.: Compactness of trajectories to some nonlinear second order evolution equation and applications. Math....
    • 2. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations, Nauka, Moscow, 1989. North-Holland, English translations (1992)
    • 3. Balakrishnan, A.V.: A theory of nonlinear damping in flexible structures. Stabilization of flexible structures, (1988), 1-12
    • 4. Balakrishnan, A.V., Taylor, L.W.: Distributed parameter nonlinear damping models for flight structures, in: Proceedings damping 89, flight...
    • 5. Bernstein, S.: Sur une classe d’équationes fonctionelles aux dérivées partielles. Bull Acad. Sci.de I’URSS, Ser. Math. 4, 17–26 (1940)
    • 6. Bezerra, F.D.M., Liu, L., Narciso, V.: Attractors for a class of wave equations with nonlocal structural energy damping, Nonlinear Differential...
    • 7. Cavalcanti, M.M., Cavalcanti, V.N.D., Filho, J.S.P., Soriano, J.A.: Existence and exponential decay for a Kirchhoff-Carrier model with...
    • 8. Cavalcanti, M.M., Cavalcanti, V.N.D., Soriano, J.A.: Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear...
    • 9. Cavalcanti, M.M., Cavalcanti, V.N.D., Silva, M.A.J., Webler, C.M.: Exponential stability for the wave equation with degenerate nonlocal...
    • 10. Chueshov, I.: Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping. J. Abstr. Differ. Equ. Appl....
    • 11. Chueshov, I.: Long-time dynamics of Kirchhoff wave models with nonlinear damping. J. Diff. Equ. 252, 1229–1262 (2012)
    • 12. Chueshov, I.: Dynamics of Quasistable Dissipative Systems. Springer, New York (2015)
    • 13. Ding, P.Y., Yang, Z.J.: Strong attractors and their stability for the structurally damped Kirchhoff wave equation with supercritical nonlinearity....
    • 14. Ghisi, M.: Global solutions for dissipative Kirchhoff string with non-Lipschitz nonlinear term. J. Diff. Equ. 230, 128–139 (2006)
    • 15. Kalantarov, V., Zelik, S.: Finite-dimensionals for the quasi-linear strongly-damped wave equation. J. Differ. Equ. 247, 1120–1155 (2009)
    • 16. Kirchhoff, G.: Vorlessungen über Mechanik, Tauber Leipzig, (1883)
    • 17. Krasovskii, N.N.: Stability of Motion: Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay. Stanford...
    • 18. Lazo, P.P.D.: Quasi-linear Wave Equation with Damping and Source Terms, Ph.D thesis, Federal University of Rio de Janeiro, Brazil, (1997)
    • 19. Lazo, P.: Global solution for a nonlinear wave equation. Appl. Math. Comput. 200, 596–601 (2008)
    • 20. Li, Y.N., Yang, Z.J.: Optimal attractors of the Kirchhoff wave model with structural nonlinear damping. J. Differ. Equ. 268, 7741–7773...
    • 21. Li, Y.N., Yang, Z.J., Ding, P.Y.: Regular solutions and strong attractors for the Kirchhoff wave model with structural nonlinear damping....
    • 22. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)
    • 23. Lions, J.L.: On some questions in boundary value problems in mathematical physics, in: International Symposium on Continuum Mechanics...
    • 24. Matsuyama, T., Ikehara, R.: On global solution and energy decay for the wave equation of Kirchhoff type with nonlinear damping term. J....
    • 25. Medeiros, L.A.,Miranda,M.M.: On a nonlinear wave equation with damping. Rev.Mat. Univ. Complut. Madrid 3, 213–231 (1990)
    • 26. Medeiros, L.A., Ferrel, J.L., de Menezes, S.B.: Vibration of elastic string. Mathematical Aspect, Part One. J. Comp. Analysis Appl. 4,...
    • 27. Nakao, M., Yang, Z.J.: Global attractors for some quasi-linear wave equations with strong dissipation. Adv. Math. Sci. Appl. 17, 89–105...
    • 28. Narciso, V.: On a Kirchhoff wave model with nonlocal nonlinear damping. Evol. Equ. Control Theory 9, 487–508 (2020)
    • 29. Ono, K.: Global existence, decay, and blow up of solution for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equ. 137,...
    • 30. Ono, K.: On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff...
    • 31. Pohozhaev, S.I.: On class of qualilinear hyperbolic equations. Math. USSR, Sbornik 25, 145–158 (1975)
    • 32. Qu, Y.X., Yang, Z.J.: Upper semicontinuity of strong attractors for the Kirchhoff wave model with structural nonlinear damping. Math....
    • 33. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the theory of global attractors,...
    • 34. Silva, M.A.J., Narciso, V., Vicente, A.: On a beam model related to flight structures with nonlocal energy damping. Discrete Contin. Dyn....
    • 35. Tang, Z., Yan, S., Xu, Y., Zhong, C.: Finite-dimensionality of attractors for wave equations with degenerate nonlocal damping. Discrete...
    • 36. Tavares, E.H.G., Silva, M.A.J., Narciso, V., Vicente, A.: Dynamics of a class of extensible beams with degenerate and non-degenerate nonlocal...
    • 37. Tavares, E.H.G., Silva, M.A.J., Lasiecka, I., Narciso, V.: Dynamics of extensible beams with nonlinear non-compact energy-level damping....
    • 38. Yang, Z.J., Wang, Y.Q.: Global attractor for the Kirchhoff type equation with strong dissipation. J. Differ. Equ. 249, 3258–3278 (2010)
    • 39. Yang, Z.J., Ding, P.Y., Li, L.: Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity. J....
    • 40. Zhao, C., Zhao, C., Zhong, C.: Asymptotic behaviour of the wave equation with nonlocal weak damping and anti-damping. J. Math. Anal. Appl....
    • 41. Zhao, C., Zhong, C., Tang, Z.: Asymptotic behavior of the wave equation with nonlocal weak damping, anti-damping and critical nonlinearity....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno