Ir al contenido

Documat


Fujita exponent on stratified Lie groups

  • Suragan, Durvudkhan [1] ; Talwar, Bharat [1]
    1. [1] Nazarbayev University

      Nazarbayev University

      Kazajistán

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 1, 2025, págs. 187-203
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00427-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that \frac{Q}{Q-2} is the Fujita exponent for a semilinear heat equation on an arbitrary stratified Lie group with homogeneous dimension Q. This covers the Euclidean case and gives new insight into proof techniques on nilpotent Lie groups. The equation we study has a forcing term which depends only upon the group elements and has positive integral. The stratified Lie group structure plays an important role in our proofs, along with test function method and Banach fixed point theorem.

  • Referencias bibliográficas
    • Bandle, C., Levine, H.A., Zhang, Q.S.: Critical exponents of Fujita type for inhomogeneous parabolic equations and systems. J. Math. Anal....
    • Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in...
    • Borikhanov, M.B., Ruzhansky, M., Torebek, B.T.: The Fujita exponent for a semilinear heat equation with forcing term on Heisenberg Group....
    • Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161–207 (1975)
    • Fujita, H.: On the blowing up of solutions of the Cauchy problem for $u_1+\Delta u+u^{1+\alpha}. J. Fac. Sci. Univ. Tokyo Sect....
    • Georgiev, V., Palmieri, A.: Lifespan estimates for local in time solutions to the semilinear heat equation on the Heisenberg group. Ann. Mat....
    • Hayakawa, K.: On nonexistence of global solutions of some semilinear parabolic differential equations. Proc. Jpn. Acad. 49, 503–505 (1973)
    • Jleli, M., Kawakami, T., Samet, B.: Critical behavior for a semilinear parabolic equation with forcing term depending on time and space. J....
    • Mitidieri, È., Pokhozhaev, S.I.: Proc. Steklov Inst. Math. 2001, no. 3(234), 1–362; translated from Tr. Mat. Inst. Steklova 234 (2001), 1–384
    • Levine, H.A.: The role of critical exponents in blowup theorems. SIAM Rev. 32(2), 262–288 (1990)
    • Monti, R., Serra Cassano, F.: Surface measures in Carnot-Carathéodory spaces. Calc. Var. Part. Diff. Equs. 13(3), 339–376 (2001)
    • Pascucci, A.: Semilinear equations on nilpotent Lie groups: global existence and blow-up of solutions. Matematiche (Catania) 53(2), 345–357...
    • Pohozaev, S., Véron, L.: Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group. Manuscr. Math....
    • Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)
    • Ruzhansky, M., Yessirkegenov, N.: Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian...
    • Suragan, D., Talwar, B.: Nonexistence of solutions of certain semilinear heat equations. arXiv preprint arXiv:2210.11307 (2022)
    • Varopoulos, NTh., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100. Cambridge University...
    • Zhang, Q.S.: A new critical phenomenon for semilinear parabolic problems. J. Math. Anal. Appl. 219(1), 125–139 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno