Ir al contenido

Documat


Infinitely many positive energy solutions for semilinear Neumann equations with critical Sobolev exponent and concave-convex nonlinearity

  • Echarghaoui, Rachid [1] ; Sersif, Rachid [1] ; Zaimi, Zakaria [1]
    1. [1] Department of Mathematics, Faculty of Sciences, Ibn Tofail University, B. P. 133, Kenitra, Morocco
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 1, 2025, págs. 163-185
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00426-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The authors of Cao and Yan (J Differ Equ 251:1389–1414, 2011) have considered the following semilinear critical Neumann problem:

      \begin{aligned} \varvec{-\Delta u=\vert u\vert ^{2^{*}-2} u+g(u) \quad \text{ in } \Omega , \quad \frac{\partial u}{\partial \nu }=0 \quad \text{ on } \partial \Omega ,} \end{aligned} where \varvec{\Omega } is a bounded domain in \varvec{\mathbb {R}^{N}} satisfying some geometric conditions, \varvec{\nu } is the outward unit normal of \varvec{\partial \Omega , 2^{*}:=\frac{2 N}{N-2}} and \varvec{g(t):=\mu \vert t\vert ^{p-2} t-t,} where \varvec{p \in \left( 2,2^{*}\right) } and \varvec{\mu >0} are constants. They proved the existence of infinitely many solutions with positive energy for the above problem if \varvec{N>\max \left( \frac{2(p+1)}{p-1}, 4\right) .} In this present paper, we consider the case where the exponent \varvec{p \in \left( 1,2\right) } and we show that if \varvec{N>\frac{2(p+1)}{p-1},} then the above problem admits an infinite set of solutions with positive energy. Our main result extend that obtained by P. Han in [9] for the case of elliptic problem with Dirichlet boundary conditions.

  • Referencias bibliográficas
    • Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122,...
    • Bartsch, T., Willem, M.: On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 123, 3555–3561 (1995)
    • Cao, D., Han, P.: A note on the positive energy solutions for elliptic equations involving critical Sobolev exponent. Appl. Math. Lett. 16,...
    • Cao, D., Han, P.: Infinitely many positive energy solutions for semilinear elliptic equations with concave and convex nonlinearity, pp. 53–64....
    • Cao, D., Peng, S., Yan, S.: Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 262, 2861–2902...
    • Cao, D., Yan, S.: Infinitely many solutions for an elliptic Neumann problem involving critical Sobolev growth. J. Differential Equ. 251, 1389–1414...
    • Cao, D., Yan, S.: Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential. Calc. Var. Partial....
    • Devillanova, G., Solimini, S.: Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Diff. Equ. 7,...
    • Han, P.: Many solutions for elliptic equations with critical exponents. Israel J. Math. 164(1), 125–152 (2008)
    • Ni, W.M., Takagi, I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)
    • Ni, W.M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44, 819–851 (1991)
    • Pierotti, D., Terracini, S.: On a Neumann problem with critical exponent and critical nonlinearity on the boundary. Comm. Partial Diff. Equ....
    • Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)
    • Yan, S., Yang, J.: Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents. Calc. Var. Partial...
    • Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)
    • Willem, W.: Minimax Theorems, Birkhäuser, (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno