Ir al contenido

Documat


A Grayson-type theorem for star-shaped curves

  • Fang, Jianbo [1] ; Chen, Fangwei [1] ; Yang, Yunlong [2]
    1. [1] Guizhou University of Finance and Economics

      Guizhou University of Finance and Economics

      China

    2. [2] Dalian Maritime University

      Dalian Maritime University

      China

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 1, 2025, págs. 151-162
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00425-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper focuses on a length-preserving flow for star-shaped curves with respect to the origin. Under the length-preserving flow, the evolving curve keeps star-shapedness and converges smoothly to a circle, which can be regarded as a Grayson-type theorem for star-shaped curves under this flow.

  • Referencias bibliográficas
    • Andrews, B., Bryan, P.: Curvature bound for curve shortening flow via distance comparison and a direct proof of Grayson’s theorem. J. Reine...
    • Angenent, S.B.: Parabolic equations for curves on surfaces. I: curves with p-integrable curvature. Ann. Math. 132, 451–483 (1990)
    • Angenent, S.B.: Parabolic equations for curves on surfaces. II: Intersections, blow-up and generalized solutions. Ann. Math. 133, 171–215...
    • Chou, K.S., Zhu, X.P.: The Curve Shortening Problem. CRC Press, Boca Raton, FL (2001)
    • Chow, B., Liou, L.P., Tsai, D.-H.: Expansion of embedded curves with turning angle greater than −π. Invent. Math. 123 (3), 415–429 (1996)
    • Dittberner, F.: Curve flows with a global forcing term. J. Geom. Anal. 3, 8414–8459 (2021)
    • Fang, J.B.: Deforming a starshaped curve into a circle by an area-preserving flow. Bull. Aust. Math. Soc. 102 (3), 498–505 (2020)
    • Gage, M.E., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23 (1), 69–96 (1986)
    • Gage, M.E.: On an area-preserving evolution equation for plane curves. In: D.M. DeTurck (eds.) Nonlinear Problems in Geometry. Contemporary...
    • Gao, L.Y., Pan, S.L.: Gage’s original normalized CSF can also yield the Grayson theorem. Asian J. Math. 20 (4), 785–794 (2016)
    • Gao, L.Y., Pan, S.L.: Star-shaped centrosymmetric curves under Gage’s area-preserving flow. J. Geom. Anal. 33(11) (348)(2023)
    • Grayson, M.A.: The heat equation shrinks embedded plane curve to round points. J. Differ. Geom. 26(2), 285–314 (1987)
    • Guan, P.F., Li, J.F.: A mean curvature type flow in space forms. Int. Math. Res. Not. IMRN 13, 4716–4740 (2015)
    • Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24 (2), 153–179 (1986)
    • Hamilton, R.S.: Isoperimetric estimates for the curve shrinking flow in the plane. Modern Methods in Complex Analysis (Princeton, 1992), 201–222....
    • Huisken, G.: A distance comparison principle for evolving curves. Asian J. Math. 2, 127–133 (1998)
    • Jiang, L.S., Pan, S.L.: On a non-local curve evolution problem in the plane. Commun. Anal. Geom. 16, 1–26 (2008)
    • Krylov, N.V.: Nonlinear elliptic and parabolic equations of the second order. In: Mathematics and Its Applications (Soviet Series), Vol. 7....
    • Ma, L., Cheng, L.: A non-local area preserving curve flow. Geom. Dedicata 171, 231–247 (2014)
    • Ma, L., Zhu, A.Q.: On a length preserving curve flow. Monatsh. Math. 165, 57–78 (2012)
    • Magni, A., Mantegazza, C.: A note on Grayson’s theorem. Rend. Semin. Mat. Univ. Padova 131, 263–279 (2014)
    • Mayer, U.F.: A singular example for the averaged mean curvature flow. Exp. Math. 10, 103–107 (2001)
    • Oaks, J.A.: Singularities and self-intersections of curves evolving on surfaces. Indiana Univ. Math. J. 43, 959–981 (1994)
    • Pan, S.L., Yang, J.N.: On a non-local perimeter-preserving curve evolution problem for convex plane curves. Manuscr. Math. 127, 469–484 (2008)
    • Tsai, D.-H.: Geometric expansion of starshaped plane curves. Commun. Anal. Geom. 3, 459–480 (1996)
    • Tsai, D.-H., Wang, X.L.: On length-preserving and area-preserving nonlocal flow of convex closed plane curves. Cal. Var. PDEs 54, 3603–3622...
    • Urbas, J.I.E.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205, 355–372 (1990)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno