Ir al contenido

Documat


Skew derivations of incidence algebras

  • Fornaroli, Érica Z. [1] ; Khrypchenko, Mykola [2]
    1. [1] Universidade Estadual de Maringá

      Universidade Estadual de Maringá

      Brasil

    2. [2] Universidade Federal de Santa Catarina

      Universidade Federal de Santa Catarina

      Brasil

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 1, 2025, págs. 113-132
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00423-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In the first part of the paper we describe \varphi-derivations of the incidence algebra I(X, K) of a locally finite poset X over a field K, where \varphi is an arbitrary automorphism of I(X, K). We show that they admit decompositions similar to that of usual derivations of I(X, K). In particular, the quotient of the space of \varphi-derivations of I(X, K) by the subspace of inner \varphi-derivations of I(X, K) is isomorphic to the first group of certain cohomology of X, which is developed in the second part of the paper.

  • Referencias bibliográficas
    • Baclawski, K.: Automorphisms and derivations of incidence algebras. Proc. Am. Math. Soc. 36(2), 351–356 (1972)
    • Benkovič, D.: Jordan o-derivations of triangular algebras. Linear Multilinear Algebra 64(2), 143–155 (2016)
    • Benkovič, D.: Lie o-derivations of triangular algebras. Linear Multilinear Algebra 70(15), 2966–2983 (2022)
    • Brešar, M.: On generalized biderivations and related maps. J. Algebra 172(3), 764–786 (1995)
    • Brusamarello, R., Fornaroli, E.Z., Santulo, E.A., Jr.: Multiplicative automorphisms of incidence algebras. Commun. Algebra 43, 726–736 (2015)
    • Fornaroli, É.Z., Pezzott, R.E.M.: Additive derivations of incidence algebras. Commun. Algebra 49(4), 1816–1828 (2021)
    • Khripchenko, N.S.: Derivations of finitary incidence rings. Commun. Algebra 40(7), 2503–2522 (2012)
    • Khrypchenko, M.: Jordan derivations of finitary incidence rings. Linear Multilinear Algebra 64(10), 2104–2118 (2016)
    • Loday, J.-L.: Cyclic homology, vol. 301 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]....
    • Martín González, C., Repka, J., Sánchez-Ortega, J.: Automorphisms, o-biderivations and o-commuting maps of triangular algebras. Mediterr....
    • Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Publishing Company Inc, California (1984)
    • Rota, G.-C.: On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2,...
    • Sánchez-Ortega, J.: o-mappings of triangular algebras. arXiv:1312.4635 (2013)
    • Spiegel, E., O’Donnell, C.J.: Incidence Algebras. Marcel Dekker, New York (1997)
    • Stanley, R.: Structure of incidence algebras and their automorphism groups. Bull. Am. Math. Soc. 76, 1236–1239 (1970)
    • Xiao, Z.K.: Jordan derivations of incidence algebras. Rocky Mountain J. Math. 45(4), 1357–1368 (2015)
    • Zhang, X., Khrypchenko, M.: Lie derivations of incidence algebras. Linear Algebra Appl. 513, 69–83 (2017)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno