Ir al contenido

Documat


Attractor for minimal iterated function systems

  • Sarizadeh, Aliasghar [1]
    1. [1] Ilam University

      Ilam University

      Irán

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 1, 2025, págs. 105-111
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00422-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In the present work, we study the attractors of iterated function systems (IFSs) on compact metric spaces. We prove that the whole of the phase space of a forward minimal IFS, for which some map admits an attracting fixed point, is an attractor.

  • Referencias bibliográficas
    • Barnsley, M.: Fractals Everywhere. Academic Press Inc, Boston (1988)
    • Barrientos, P.G., Fakhari, A., Sarizadeh, A.: Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete Contin....
    • Barrientos, P.G., Ghane, F.H., Malicet, D., Sarizadeh, A.: On the chaos game of iterated function systems. Topol. Methods Nonlinear Anal....
    • Bielecki, A.: Iterated function system analogues on compact metric spaces and their attractors. Univ. Iagel. Acta Math. 32, 187–192 (1995)
    • Bielecki, A.: Approximation of attractors by pseudotrajectories of iterated function systems. Univ Iagl. Acta. Math. 37, 173–179 (1999)
    • Fernández, L., Good, C.: Shadowing for induced maps of hyperspaces. Fund. Math. 235(3), 277–286 (2016)
    • Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)
    • Iglesias, J., Portela, A.: Almost open semigroup actions. Semigroup Forum 98(2), 261–270 (2019)
    • Mandelbrot, B.: The Fractal Geometry of Nature. W. H. Freeman and Co., San Francisco (1982)
    • Žáčik, T.: On a shadowing lemma in metric spaces. Math. Bohemica 117(2), 137–49 (1992)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno